• Title/Summary/Keyword: beta-function

Search Result 1,465, Processing Time 0.026 seconds

SUM AND PRODUCT THEOREMS RELATING TO GENERALIZED RELATIVE ORDER (𝛼, 𝛽) AND GENERALIZED RELATIVE TYPE (𝛼, 𝛽) OF ENTIRE FUNCTIONS

  • Biswas, Tanmay;Biswas, Chinmay;Saha, Biswajit
    • The Pure and Applied Mathematics
    • /
    • v.28 no.2
    • /
    • pp.155-185
    • /
    • 2021
  • Orders and types of entire functions have been actively investigated by many authors. In this paper, we investigate some basic properties in connection with sum and product of generalized relative order (𝛼, 𝛽), generalized relative type (𝛼, 𝛽) and generalized relative weak type (𝛼, 𝛽) of entire functions with respect to another entire function where 𝛼, 𝛽 are continuous non-negative functions on (-∞, +∞).

Identification of Mutations in Protein Kinase CKIIβ Subunit That Affect Its Binding to Ribosomal Protein L41 and Homodimerization

  • Ahn, Bong-Hyun;Lee, Ji-Hoon;Bae, Young-Seuk
    • BMB Reports
    • /
    • v.36 no.4
    • /
    • pp.344-348
    • /
    • 2003
  • Protein kinase CKII is composed of two catalytic ($\alpha$ or $\alpha$') subunits and two regulatory ($\beta$) subunits. The $CKII{\beta}$ subunit is thought to mediate the tetramer formation and interact with other target proteins. However, its physiological function remains obscure. In this study, point mutants of $CKII{\beta}$ that are defective for the L41 binding were isolated by using the reverse two-hybrid system. A sequence analysis of the point mutants revealed that Asp-26, Met-52, and Met-78 of $CKII{\beta}$ are critical for L41 binding; Asn-67 (and/or Lys-139) and Met-52 are important for $CKII{\beta}$ homodimerization. Two point mutants, R75 and R83, of $CKII{\beta}$ interacted with L5, topoisomerase $II{\beta}$, and CKBBP1/SAG, but not with the wild-type $CKII{\beta}$. This indicates that $CKII{\beta}$ homodimerization is not a prerequisite for its binding to target proteins. These $CKII{\beta}$ point mutants may be useful in exploring the biochemical physiological functions of $CKII{\beta}$.

Justicidin A Reduces β-Amyloid via Inhibiting Endocytosis of β-Amyloid Precursor Protein

  • Chun, Yoon Sun;Kwon, Oh-Hoon;Oh, Hyun Geun;Cho, Yoon Young;Yang, Hyun Ok;Chung, Sungkwon
    • Biomolecules & Therapeutics
    • /
    • v.27 no.3
    • /
    • pp.276-282
    • /
    • 2019
  • ${\beta}$-amyloid precursor protein (APP) can be cleaved by ${\alpha}$-, and ${\gamma}$-secretase at plasma membrane producing soluble ectodomain fragment ($sAPP{\alpha}$). Alternatively, following endocytosis, APP is cleaved by ${\beta}$-, and ${\gamma}$-secretase at early endosomes generating ${\beta}$-amyloid ($A{\beta}$), the main culprit in Alzheimer's disease (AD). Thus, APP endocytosis is critical for $A{\beta}$ production. Recently, we reported that Monsonia angustifolia, the indigenous vegetables consumed in Tanzania, improved cognitive function and decreased $A{\beta}$ production. In this study, we examined the underlying mechanism of justicidin A, the active compound of M. angustifolia, on $A{\beta}$ production. We found that justicidin A reduced endocytosis of APP, increasing $sAPP{\alpha}$ level, while decreasing $A{\beta}$ level in HeLa cells overexpressing human APP with the Swedish mutation. The effect of justicidin A on $A{\beta}$ production was blocked by endocytosis inhibitors, indicating that the decreased APP endocytosis by justicidin A is the underlying mechanism. Thus, justicidin A, the active compound of M. angustifolia, may be a novel agent for AD treatment.

Loss of βPix Causes Defects in Early Embryonic Development, and Cell Spreading and Platelet-Derived Growth Factor-Induced Chemotaxis in Mouse Embryonic Fibroblasts

  • Kang, TaeIn;Lee, Seung Joon;Kwon, Younghee;Park, Dongeun
    • Molecules and Cells
    • /
    • v.42 no.8
    • /
    • pp.589-596
    • /
    • 2019
  • ${\beta}Pix$ is a guanine nucleotide exchange factor for the Rho family small GTPases, Rac1 and Cdc42. It is known to regulate focal adhesion dynamics and cell migration. However, the in vivo role of ${\beta}Pix$ is currently not well understood. Here, we report the production and characterization of ${\beta}Pix$-KO mice. Loss of ${\beta}Pix$ results in embryonic lethality accompanied by abnormal developmental features, such as incomplete neural tube closure, impaired axial rotation, and failure of allantois-chorion fusion. We also generated ${\beta}Pix$-KO mouse embryonic fibroblasts (MEFs) to examine ${\beta}Pix$ function in mouse fibroblasts. ${\beta}Pix$-KO MEFs exhibit decreased Rac1 activity, and defects in cell spreading and platelet-derived growth factor (PDGF)-induced ruffle formation and chemotaxis. The average size of focal adhesions is increased in ${\beta}Pix$-KO MEFs. Interestingly, ${\beta}Pix$-KO MEFs showed increased motility in random migration and rapid wound healing with elevated levels of MLC2 phosphorylation. Taken together, our data demonstrate that ${\beta}Pix$ plays essential roles in early embryonic development, cell spreading, and cell migration in fibroblasts.

Transforming growth factor β1 enhances adhesion of endometrial cells to mesothelium by regulating integrin expression

  • Choi, Hee-Jung;Park, Mi-Ju;Kim, Bo-Sung;Choi, Hee-Jin;Joo, Bosun;Lee, Kyu Sup;Choi, Jung-Hye;Chung, Tae-Wook;Ha, Ki-Tae
    • BMB Reports
    • /
    • v.50 no.8
    • /
    • pp.429-434
    • /
    • 2017
  • Endometriosis is the abnormal growth of endometrial cells outside the uterus, causing pelvic pain and infertility. Furthermore, adhesion of endometrial tissue fragments to pelvic mesothelium is required for the initial step of endometriosis formation outside uterus. $TGF-{\beta}1$ and adhesion molecules importantly function for adhesion of endometrial tissue fragments to mesothelium outside uterus. However, the function of $TGF-{\beta}1$ on the regulation of adhesion molecule expression for adhesion of endometrial tissue fragments to mesothelium has not been fully elucidated. Interestingly, transforming growth factor ${\beta}1$ ($TGF-{\beta}1$) expression was higher in endometriotic epithelial cells than in normal endometrial cells. The adhesion efficiency of endometriotic epithelial cells to mesothelial cells was also higher than that of normal endometrial cells. Moreover, $TGF-{\beta}1$ directly induced the adhesion of endometrial cells to mesothelial cells through the regulation of integrin of ${\alpha}V$, ${\alpha}6$, ${\beta}1$, and ${\beta}4$ via the activation of the $TGF-{\beta}1/TGF-{\beta}RI/Smad2$ signaling pathway. Conversely, the adhesion of $TGF-{\beta}1-stimulated$ endometrial cells to mesothelial cells was clearly reduced following treatment with neutralizing antibodies against specific $TGF-{\beta}1-mediated$ integrins ${\alpha}V$, ${\beta}1$, and ${\beta}4$ on the endometrial cell membrane. Taken together, these results suggest that $TGF-{\beta}1$ may act to promote the initiation of endometriosis by enhancing integrin-mediated cell-cell adhesion.

The Effect of Interleukin $1-{\beta}$, Platelet Derived Growth Factor-BB and Transforming Growth $Factor-{\beta}$ on the expression of PDLs17 mRNA in the Cultured Human Periodontal Ligament Fibroblasts (($IL-1{\beta}$), PDGF-BB 그리고 $TGF-{\beta}$가 사람 배양 치주인대 섬유모세포의 PDLs17 mRNA의 발현에 미치는 영향)

  • Lirn, Ki-Jung;Han, Kyung-Yoon;Kirn, Byung-Ock;Yeorn, Chang-Yeob;Park, Joo-Cheol
    • Journal of Periodontal and Implant Science
    • /
    • v.31 no.4
    • /
    • pp.787-801
    • /
    • 2001
  • The molecular mechanisms control the function of PDL(periodonta1 ligament) cells and/or fibroblasts remain unclear. PDLsl7, PDL-specific gene, had previousely identified the cDNA for a novel protein from cultured PDL fibroblasts using subtraction hybridization between gingival fibroblasts and PDL fibroblasts. The purpose of this study was to determine the regulation by growth factors and cytokines on PDLsl7 gene expression in cultured human periodontal ligament cells and observe the immunohistochemical localization of PDLsl7 protein in various tissues of mouse. Primary PDL fibroblasts isolated by scraping the root of the extracted human mandibular third molars. The cells were incubated with various concentration of human recombinant $IL-1{\beta}$, PDGF-BB and TGF\;${\beta}$ for 48h nd 2 weeks. At each time point total RNA was extracted and the levels of transcription ere assessed by reverse transcription-polymerase chain reaction (RT-PCR assay). polyclonal antiserum raised against PDLsl7 peptides, CLSVSYNRSYQINE and SEAVHETDLHDGC, were made, and stained the tooth, periodontium, developing bone, bone marrow and mid-palatal suture of the mouse. The results were as follows. 1. PDLsl7 mRNA levels were increased in response to PDGF (10ng/ml) and $TGF\;{\beta}$(20ng/ml) after treatment of the $IL-1{\beta}$, PDGF-BB and $TGF{\beta}$for 48 h. 2. PDLsl7 was up-regulated only by $TGF{\beta}$(20 ng/ml) after treatment of the $IL-1{\beta}$, PDGF-BB and $TGF\;{\beta}$ for 2 weeks and unchanged by the other stimulants. 3. PDLsl7 was a novel protein coding the 142 amino acid peptides in the ORF and the nucleotide sequences of the obtained cDNA from RT-PCR was exactly same as the nucleotides of the database. 4. Immunohistochemical analysis showed that PDLsl7 is preferentially expressed in the PDL, differentiating osteoblast-like cells and stromal cells of the bone marrow in the adult mouse. 5. The expression of PDLsl7 protein was barely detectable in gingival fibroblasts, hematopoetic cells of the bone marrow and mature osteocytes of the alveolar bone. These results suggest that PDLsl7 might upregulated by PDGF-BB or $TGF{\beta}$ and acts at the initial stage of differentiation when the undifferentiated mesenchymal cells in the bone marrow and PDL differentiate into multiple cell types. However, more research needs to be performed to gain a better understanding of the exact function of PDLsl7 during the differentiation of bone marrow mesenchymal and PDL cells.

  • PDF

Expression of the Promoter for the Maltogenic Amylase Gene in Bacillus subtilis 168

  • Kim Do-Yeon;Cha Choon-Hwan;Oh Wan-Seok;Yoon Young-Jun;Kim Jung-Wan
    • Journal of Microbiology
    • /
    • v.42 no.4
    • /
    • pp.319-327
    • /
    • 2004
  • An additional amylase, besides the typical $\alpha-amylase,$ was detected for the first time in the cytoplasm of B. subtilis SUH4-2, an isolate from Korean soil. The corresponding gene (bbmA) encoded a malto­genic amylase (MAase) and its sequence was almost identical to the yvdF gene of B. subtilis 168, whose function was unknown. Southern blot analysis using bbmA as the probe indicated that this gene was ubiquitous among various B. subtilis strains. In an effort to understand the physiological function of the bbmA gene in B. subtilis, the expression pattern of the gene was monitored by measuring the $\beta-galactosidase$ activity produced from the bbmA promoter fused to the amino terminus of the lacZ struc­tural gene, which was then integrated into the amyE locus on the B. subtilis 168 chromosome. The pro­moter was induced during the mid-log phase and fully expressed at the early stationary phase in defined media containing $\beta--cyclodextrin\;(\beta-CD),$ maltose, or starch. On the other hand, it was kept repressed in the presence of glucose, fructose, sucrose, or glycerol, suggesting that catabolite repression might be involved in the expression of the gene. Production of the $\beta-CD$ hydrolyzing activity was impaired by the spo0A mutation in B. subtilis 168, indicating the involvement of an additional regu­latory system exerting control on the promoter. Inactivation of yvdF resulted in a significant decrease of the $\beta-CD$ hydrolyzing activity, if not all. This result implied the presence of an additional enzyme(s) that is capable of hydrolyzing $\beta-CD$ in B. subtilis 168. Based on the results, MAase encoded by bbmA is likely to be involved in maltose and $\beta-CD$ utilization when other sugars, which are readily usable as an energy source, are not available during the stationary phase.

Chemical Constituents from Artemisia iwayomogi Increase the Function of Osteoblastic MC3T3-E1 Cells

  • Ding, Yan;Liang, Chun;Choi, Eun-Mi;Ra, Jeong-Chan;Kim, Young-Ho
    • Natural Product Sciences
    • /
    • v.15 no.4
    • /
    • pp.192-197
    • /
    • 2009
  • Chemical investigation of the aerial parts of Artemisia iwayomogi has afforded five glycoside compounds. Their chemical structures were characterized by spectroscopic methods to be turpinionoside A (1), (Z)-3-hexenyl O-${\alpha}$-arabinopyranosyl-(1${\rightarrow}$6)-O-${\beta}$-D-glucopyranoside (2), (Z)-5'-hydroxyjasmone 5'-O-${\beta}$-Dglucopyranoside (3), (-)-syringaresinol-4-O-${\beta}$-D-glucopyranoside (4), and methyl 3,5-di-O-caffeoyl quinate (5). All of them were isolated for the first time from Artemisia species. The effect of compounds 1 - 5 on the function of osteoblastic MC3T3-E1 cells was examined by checking the cell viability, alkaline phosphatase (ALP) activity, collagen synthesis, and mineralization. Turpinionoside A (1) significantly increased the function of osteoblastic MC3T3-E1 cells. Cell viability, ALP activity, collagen synthesis, and mineralization were increased up to 117.2% (2 ${\mu}M$), 110.7% (0.4 ${\mu}M$), 156.0% (0.4 ${\mu}M$), and 143.0 % (2 ${\mu}M$), respectively.

Effect of Job's Tear(Yul-Moo) Extracts on Mouse Oral Administration $IL-l{\beta}$, IL-6, $TNF-{\alpha}$, IL-10 Cytokine Production by Peritoneal Macrophage for Two Weeks (2주 동안의 율무 추출물 경구 투여가 복강대식세포의 사이토카인 $IL-1{\beta}$, IL-6, $TNF-{\alpha}$, IL-10 생성에 미치는 영향)

  • Ryu, Hye-Sook
    • The Korean Journal of Food And Nutrition
    • /
    • v.21 no.2
    • /
    • pp.204-209
    • /
    • 2008
  • The present study examined the ex vivo effect of Job's tear on immune function. Seven to eight week old mice(Balb/c) were fed a chow diet ad libitum two different concentrations (50 and 500 mg/kg BW) of water extract of Job's tear were orally administ every other day for two weeks. The results indicated that macrophage activation had occurred in the mice receiving 50 mg/kg B. W. of Job's tear water extract. Overall, using a mouse model, this study demonstrated that Job's tear extract may enhance immune function by regulating the $IL-1{\beta}$, IL-6, $TNF-{\alpha}$ and IL-10 cytokine production capacity of activated macrophages in mice. This study may suggest that supplementation of Job's tear water extracts may enhance the immune function by regulating the enhancing the cytokine production by activated macrophage ex vivo.

Characterization of Function Rings Between C*(X) and C(X)

  • De, Dibyendu;Acharyya, Sudip Kumar
    • Kyungpook Mathematical Journal
    • /
    • v.46 no.4
    • /
    • pp.503-507
    • /
    • 2006
  • Let X be a Tychonoff space and ${\sum}(X)$ the set of all the subrings of C(X) that contain $C^*(X)$. For any A(X) in ${\sum}(X)$ suppose $_{{\upsilon}A}X$ is the largest subspace of ${\beta}X$ containing X to which each function in A(X) can be extended continuously. Let us write A(X) ~ B(X) if and only if $_{{\upsilon}A}X=_{{\upsilon}B}X$, thereby defining an equivalence relation on ${\sum}(X)$. We have shown that an A(X) in ${\sum}(X)$ is isomorphic to C(Y ) for some space Y if and only if A(X) is the largest member of its equivalence class if and only if there exists a subspace T of ${\beta}X$ with the property that A(X)={$f{\in}C(X):f^*(p)$ is real for each $p$ in T}, $f^*$ being the unique continuous extension of $f$ in C(X) from ${\beta}X$ to $\mathbb{R}^*$, the one point compactification of $\mathbb{R}$. As a consequence it follows that if X is a realcompact space in which every $C^*$-embedded subset is closed, then C(X) is never isomorphic to any A(X) in ${\sum}(X)$ without being equal to it.

  • PDF