• 제목/요약/키워드: beta-catenin

검색결과 267건 처리시간 0.022초

Rho-associated Kinase is Involved in Preimplantation Development and Embryonic Compaction in Pigs

  • Son, Myeong-Ju;Park, Jin-Mo;Min, Sung-Hun;Park, Hum-Dai;Koo, Deog-Bon
    • Journal of Embryo Transfer
    • /
    • 제25권2호
    • /
    • pp.103-110
    • /
    • 2010
  • The first morphogenetic event of preimplantation development, compaction, was required efficient production of porcine embryos in vitro. Compaction of the porcine embryo, which takes place at post 4-cell stage, is dependent upon the adhesion molecule E-cadherin. The E-cadherin through ${\beta}$-catenin contributes to stable cell-cell adhesion. Rho-associated kinase (ROCK) signaling was found to support the integrity of E-cadherin based cell contacts. In this study, we traced the effects of ROCK-1 on early embryonic development and structural integrity of blastocysts in pigs. Then, in order to gain new insights into the process of compaction, we also examined whether ROCK-1 signaling is involved in the regulation of the compaction mediated by E-cadherin of cellular adhesion molecules. As a result, real-time RT-PCR analysis showed that the expression of ROCK-1 mRNA was presented throughout porcine preimplantation stages, but not expressed as consistent levels. Thus, we investigated the blastocyst formation of porcine embryos treated with LPA and Y27632. Blastocysts formation and their qualities in LPA treated group increased significantly compared to those in the Y27632-treated group (p < 0.05). Then, to determine whether ROCK-1 associates embryonic compaction, we explored the effect of activator and/or inhibitor of ROCK-1 on compaction of embryos in pigs. The rate of compacted morula in LPA treated group was increased compared to that in the Y27632-treated group (39.7 vs 12.0%). Furthermore, we investigated the localization and expression pattern of E-cadherin at 4-cell stage porcine embryos in both LPA- and Y27632-treated groups by immunocytochemical analysis and Western blot analysis. The expression of E-cadherin was increased in LPA-treated group compared to that in the Y27632-treated group. The localization of E-cadherin in LPA-treated group was enriched in part of blastomere contacts compared to that Y27632-treated group. ROCK-1 as a crucial mediator of embryo compaction may plays an important role in regulating compaction through E-cadherin of the cell adhesion during the porcine preimplantation embryo. We concluded that ROCK-1 gene may affect the developmental potential of porcine blastocysts through regulating embryonic compaction.

Induction of Apoptosis by HDAC Inhibitor Trichostatin A through Activation of Caspases and NF-κB in Human Prostate Epithelial Cells. (인체 전립선 상피세포에서 HDAC 저해제 trichostatin A의 caspase 및 NF-κB의 활성화를 통한 apoptosis 유도)

  • Park, Cheol;Jin, Cheng-Yun;Choi, Byung-Tae;Lee, Won-Ho;Choi, Yung-Hyun
    • Journal of Life Science
    • /
    • 제18권3호
    • /
    • pp.336-343
    • /
    • 2008
  • Histone deacetylases (HDACs) inhibitors have emerged as the accessory therapeutic agents for various human cancers, since they can block the activity of specific HDACs, restore the expression of some tumor suppressor genes and induce cell differentiation, cell cycle arrest and apoptosis in vitro and in vivo. In the present study, we investigated that the effect of trichostatin A (TSA), an HDAC inhibitor, on the cell growth and apoptosis, and its effect on the nuclear factor-kappaB $(NF-{\kappa}B)$ activity in 267B1 human prostate epithelial cells. Exposure of 267B1 cells to TSA resulted in growth inhibition and apoptosis induction in and dose-dependent manners as measured by fluorescence microscopy, agarose gel electrophoresis and flow cytometry analysis. TSA treatment inhibited the levels of IAP family members such as c-IAP-1 and c-IAP-2 and induced the proteolytic activation of caspase-3, -8 and -9, which were associated with concomitant degradation of poly (ADP-ribose)-polymerase, ${\beta}-catenin$ and laminin B proteins. The increase in apoptosis by TSA was connected with the translocation of $NF-{\kappa}B$ from cytosol to nucleus, increase of the DNA binding as well as promoter activity of $NF-{\kappa}B$, and degradation of cytosolic inhibitor of KappaB $(I{\kappa}B)-{\alpha}$ protein. We therefore concluded that TSA demonstrated anti-proliferative and apoptosis-inducing effects on 267B1 cells in vitro, and that the activation of caspases and $NF-{\kappa}B$ may play important roles in its mechanism of action. Although further studies are needed, these findings provided important insights into the possible molecular mechanisms of the anti-cancer activity of TSA.

Induction of Apoptosis in Human Colon Carcinoma HCT116 Cells Using a Water Extract of Lepidium virginicum L. (콩다닥냉이 추출물에 의한 HCT116 대장암세포의 사멸 유도에 관한 연구)

  • Chae, Yang-Hui;Shin, Dong-Yeok;Park, Cheol;Lee, Yong-Tae;Moon, Sung-Gi;Choi, Yung-Hyun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • 제40권5호
    • /
    • pp.649-659
    • /
    • 2011
  • To examine the anti-cancer effects of Lepidium virginicum L., the anti-proliferative and pro-apoptotic effects of a water extract of L. virginicum leaves (WELVL) and of L. virginicum roots (WELVR) were investigated in HCT116 human colon carcinoma cells. The treatment of HCT116 cells with WELVL and WELVR resulted in the inhibition of growth and morphological changes in a concentration-dependent manner by inducing apoptosis. The growth inhibition and apoptosis induction by WELVR was stronger than that of WELVL thus, we determined that WELVR was the more optimal extract for this study. The increased apoptotic events in HCT116 cells caused by WELVR were associated with an up-regulation of Fas ligand, Bax, and Bad expression, a down-regulation of Bcl-2, Bcl-$_XL$, and Bid expression, and a decrease in the mitochondrial membrane potential (MMP, ${\Delta}{\psi}m$). WELVR treatment induced the proteolytic activation of caspase-3, -8, and -9, and the degradation of caspase-3 substrate proteins, such as poly (ADP-ribose) polymerase (PARP), ${\beta}$-catenin, and phospholipase C-${\gamma}1$ (PLC-${\gamma}1$). In addition, apoptotic cell death induced by WELVR was correlated with a down-regulation of inhibitors of the apoptosis protein (IAP) family, such as the X-linked inhibitor of apoptosis protein (XIAP), cIAP-1, and cIAP-2. These findings suggest that the WELVR-induced inhibition of cell proliferation is associated with the induction of apoptotic cell death. WELVR may be a potential chemotherapeutic agent for the control of HCT116 human colon carcinoma cells.

Arg-Leu-Tyr-Glu Suppresses Retinal Endothelial Permeability and Choroidal Neovascularization by Inhibiting the VEGF Receptor 2 Signaling Pathway

  • Park, Wonjin;Baek, Yi-Yong;Kim, Joohwan;Jo, Dong Hyun;Choi, Seunghwan;Kim, Jin Hyoung;Kim, Taesam;Kim, Suji;Park, Minsik;Kim, Ji Yoon;Won, Moo-Ho;Ha, Kwon-Soo;Kim, Jeong Hun;Kwon, Young-Guen;Kim, Young-Myeong
    • Biomolecules & Therapeutics
    • /
    • 제27권5호
    • /
    • pp.474-483
    • /
    • 2019
  • Vascular endothelial growth factor (VEGF) plays a pivotal role in pathologic ocular neovascularization and vascular leakage via activation of VEGF receptor 2 (VEGFR2). This study was undertaken to evaluate the therapeutic mechanisms and effects of the tetrapeptide Arg-Leu-Tyr-Glu (RLYE), a VEGFR2 inhibitor, in the development of vascular permeability and choroidal neovascularization (CNV). In cultured human retinal microvascular endothelial cells (HRMECs), treatment with RLYE blocked VEGF-A-induced phosphorylation of VEGFR2, Akt, ERK, and endothelial nitric oxide synthase (eNOS), leading to suppression of VEGF-A-mediated hyper-production of NO. Treatment with RLYE also inhibited VEGF-A-stimulated angiogenic processes (migration, proliferation, and tube formation) and the hyperpermeability of HRMECs, in addition to attenuating VEGF-A-induced angiogenesis and vascular permeability in mice. The anti-vascular permeability activity of RLYE was correlated with enhanced stability and positioning of the junction proteins VE-cadherin, ${\beta}$-catenin, claudin-5, and ZO-1, critical components of the cortical actin ring structure and retinal endothelial barrier, at the boundary between HRMECs stimulated with VEGF-A. Furthermore, intravitreally injected RLYE bound to retinal microvascular endothelium and inhibited laser-induced CNV in mice. These findings suggest that RLYE has potential as a therapeutic drug for the treatment of CNV by preventing VEGFR2-mediated vascular leakage and angiogenesis.

Mechanism of Anti-Invasive Action of Docosahexaenoic Acid in SW480 Human Colon Cancer Cell (인체 대장암 세포주 SW480에서 docosahexaenoic acid에 의한 침윤억제 기전)

  • Shin, So-Yeon;Kim, Yong-Jo;Song, Kyoung-Sub;Jing, Kaipeng;Kim, Na-Yeong;Jeong, So-Yeon;Park, Ji-Hoon;Seo, Kang-Sik;Heo, Jun-Young;Kwon, Hyun-Joo;Park, Jong-Il;Park, Seung-Kiel;Kweon, Gi-Ryang;Yoon, Wan-Hee;Hwang, Byung-Doo;Lim, Kyu
    • Journal of Life Science
    • /
    • 제20권4호
    • /
    • pp.561-571
    • /
    • 2010
  • Colon cancer is one of the most common malignancies in the western world and the second leading cause of cancer death in Korea. Epidemiology studies have shown a reduced incidence of colon cancer among populations consuming a large quantity of ${\omega}3$-polyunsaturated fatty acids (${\omega}3$-PUFA) of marine origin. Recently, it has been found that ${\omega}3$-PUFA has an antineoplastic effect in several cancers. This study was designed to investigate the mechanism of the anti-invasive effect of ${\omega}3$-PUFA in colon cancer. ${\omega}3$-PUFA, docosahexaenoic acids (DHA) and eicosapentaenoic acid (EPA) treatment resulted in a dose-dependent inhibition of cell growth in SW480 human colon cancer cells. In contrast, arachidonic acid (AA), a ${\omega}6$-PUFA, exhibited no significant effect. This action likely involves apoptosis, given that DHA treatment increased apoptotic cells in TUNEL assay. Moreover, invasiveness of SW480 cells was inhibited following treatment of DHA in a dose-dependent manner; in contrast, AA had no effect. The levels of MMP-9 and MMP-2 mRNA decreased after DHA pretreatment. MMP-9 and MMP-2 promoter activities were also inhibited by DHA treatment. The levels of NF-kB and p-IkB protein were down-regulated by DHA pretreatment in a dose dependent manner. In addition, DHA inhibited NF-kB promoter reporter activities. These findings suggest that ${\omega}3$-PUFA may inhibit cancer cell invasion by inhibition of MMPs via reduction of NF-kB in colon cancer. In conclusion, ${\omega}3$-PUFA could be used for chemoprevention and treatment of human colon cancer.

Apoptosis Induction of Human Breast Carcinoma Cells by Ethyl Alcohol Extract of Hizikia fusiforme (Apoptosis 유도에 의한 톳 ethyl alcohol 추출물의 인체 유방암세포 증식 억제)

  • Jung, Sun-Hwa;Hwang, Won-Deuk;Nam, Taek-Jeong;Choi, Yung-Hyun
    • Journal of Life Science
    • /
    • 제19권11호
    • /
    • pp.1581-1590
    • /
    • 2009
  • Hizikia fusiforme is a kind of brown edible seaweed that mainly grows in the temperate seaside areas of the northwest pacific, including Korea, Japan and China, and has been widely used as a health food for hundreds of years. Recently, H. fusiforme has been known to exert pharmacological activities including antioxidant, antimutagenic and anticoagulant activities. However, the molecular mechanisms of H. fusiforme in malignant cells have not been clearly elucidated yet. In this study, the effects of ethyl alcohol extract of H. fusiforme (EAHF) on the anti-proliferative effects of MDA-MB-231 and MCF-7 human breast cancer cells were investigated. EAHF treatment resulted in a concentration-dependent growth inhibition by including apoptosis in MDA-MB-231 cells and G1 phase arrest in MCF-7 cells, which could be proved by MTT assay, DAPI staining, agarose gel electrophoresis and flow cytometry analysis. In MDA-MB-231 cells, the increase in apoptosis induced by EAHF treatment correlated with up-regulation of pro-apoptotic Bax expression. EAHF treatment induced the proteolytic activation of caspase-3 and caspase-9, and a concomitant inhibition of poly (ADP-ribose) polymerase, $\beta$-catenin, phospholipase-${\gamma}1$ protein and DNA fragmentation factor 45/inhibitor of caspase-activated DNase. Taken together, these findings provide important new insights into the possible molecular mechanisms of the anti-cancer activity of H. fusiforme.

Transcriptome Analyses for the Anti-Adipogenic Mechanism of an Herbal Composition (생약복합물의 지방세포형성억제 기전규명을 위한 전사체 분석)

  • Lee, Hae-Yong;Kang, Ryun-Hwa;Bae, Sung-Min;Chae, Soo-Ahn;Lee, Jung-Ju;Oh, Dong-Jin;Park, Suk-Won;Cho, Soo-Hyun;Shim, Yae-Jie;Yoon, Yoo-Sik
    • Journal of Life Science
    • /
    • 제20권7호
    • /
    • pp.1054-1065
    • /
    • 2010
  • SH21B is a natural composition composed of seven herbs: Scutellaria baicalensis Georgi, Prunus armeniaca Maxim, Ephedra sinica Stapf, Acorus gramineus Soland, Typha orientalis Presl, Polygala tenuifolia Willd and Nelumbo nucifera Gaertner (Ratio 3:3:3:3:3:2:2). In our previous study, we reported that SH21B inhibited adipogenesis and fat accumulation in 3T3-L1 cells through modulation of various regulators in the adipogenesis pathway. The aim of this study was to analyze the transcriptome profiles for the anti-adipogenic effects of SH21B in 3T3-L1 cells. Total RNAs from SH21B-treated 3T3-L1 cells were reverse-transcribed into cDNAs and hybridized to Affymetrix Mouse Gene 1.0 ST array. From microarray analyses, we identified 2,568 genes of which expressions were changed more than two-fold by SH21B, and the clustering analyses of these genes resulted in 9 clusters. Three clusters among the 9 showed down-regulation by SH21B (cluster 4, cluster 6 and cluster 9), and two clusters showed up-regulation by SH21B (cluster 7 and cluster 8) during the adipogenesis of 3T3-L1 cells. It was found that many genes related to cell proliferation and adipogenesis were included in these clusters. Clusters 4, 6 and 9 included genes which were related with adipogenesis induction and cell cycle arrest. Clusters 7 and 8 included genes related to cell proliferation as well as adipogenesis inhibition. These results suggest that the mechanisms of the anti-adipogenic effects of SH21B may be the modulation of genes involved in cell proliferation and adipogenesis.