Browse > Article
http://dx.doi.org/10.4062/biomolther.2019.041

Arg-Leu-Tyr-Glu Suppresses Retinal Endothelial Permeability and Choroidal Neovascularization by Inhibiting the VEGF Receptor 2 Signaling Pathway  

Park, Wonjin (Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University)
Baek, Yi-Yong (Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University)
Kim, Joohwan (Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University)
Jo, Dong Hyun (Fight Against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital)
Choi, Seunghwan (Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University)
Kim, Jin Hyoung (Fight Against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital)
Kim, Taesam (Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University)
Kim, Suji (Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University)
Park, Minsik (Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University)
Kim, Ji Yoon (Department of Anesthesiology and Pain Medicine, Hanyang University Hospital)
Won, Moo-Ho (Department of Neurobiology, School of Medicine, Kangwon National University)
Ha, Kwon-Soo (Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University)
Kim, Jeong Hun (Fight Against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital)
Kwon, Young-Guen (Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University)
Kim, Young-Myeong (Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University)
Publication Information
Biomolecules & Therapeutics / v.27, no.5, 2019 , pp. 474-483 More about this Journal
Abstract
Vascular endothelial growth factor (VEGF) plays a pivotal role in pathologic ocular neovascularization and vascular leakage via activation of VEGF receptor 2 (VEGFR2). This study was undertaken to evaluate the therapeutic mechanisms and effects of the tetrapeptide Arg-Leu-Tyr-Glu (RLYE), a VEGFR2 inhibitor, in the development of vascular permeability and choroidal neovascularization (CNV). In cultured human retinal microvascular endothelial cells (HRMECs), treatment with RLYE blocked VEGF-A-induced phosphorylation of VEGFR2, Akt, ERK, and endothelial nitric oxide synthase (eNOS), leading to suppression of VEGF-A-mediated hyper-production of NO. Treatment with RLYE also inhibited VEGF-A-stimulated angiogenic processes (migration, proliferation, and tube formation) and the hyperpermeability of HRMECs, in addition to attenuating VEGF-A-induced angiogenesis and vascular permeability in mice. The anti-vascular permeability activity of RLYE was correlated with enhanced stability and positioning of the junction proteins VE-cadherin, ${\beta}$-catenin, claudin-5, and ZO-1, critical components of the cortical actin ring structure and retinal endothelial barrier, at the boundary between HRMECs stimulated with VEGF-A. Furthermore, intravitreally injected RLYE bound to retinal microvascular endothelium and inhibited laser-induced CNV in mice. These findings suggest that RLYE has potential as a therapeutic drug for the treatment of CNV by preventing VEGFR2-mediated vascular leakage and angiogenesis.
Keywords
VEGF; VEGFR2; Choroidal neovascularization; Macular degeneration; Vascular leakage; Permeability;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Cao, L., Weetall, M., Bombard, J., Qi, H., Arasu, T., Lennox, W., Hedrick, J., Sheedy, J., Risher, N., Brooks, P. C., Trifillis, P., Trotta, C., Moon, Y. C., Babiak, J., Almstead, N. G., Colacino, J. M., Davis, T. W. and Peltz, S. W. (2016) Discovery of novel small molecule inhibitors of VEGF expression in tumor cells using a cell-based high throughput screening platform. PLoS ONE 11, e0168366.   DOI
2 Carmeliet, P. (2005) VEGF as a key mediator of angiogenesis in cancer. Oncology 69 Suppl 3, 4-10.   DOI
3 CATT Research Group, Martin, D. F., Maguire, M. G., Ying, G. S., Grunwald, J. E., Fine, S. L. and Jaffe, G. J. (2011) Ranibizumab and bevacizumab for neovascular age-related macular degeneration. N. Engl. J. Med. 364, 1897-1908.   DOI
4 Cunha-Vaz, J., Bernardes, R. and Lobo, C. (2011) Blood-retinal barrier. Eur. J. Ophthalmol. 21 Suppl 6, S3-S9.   DOI
5 Di Lorenzo, A., Lin, M. I., Murata, T., Landskroner-Eiger, S., Schleicher, M., Kothiya, M., Iwakiri, Y., Yu, J., Huang, P. L. and Sessa, W. C. (2013) eNOS-derived nitric oxide regulates endothelial barrier function through VE-cadherin and Rho GTPases. J. Cell Sci. 126, 5541-5552.   DOI
6 Yan, Z., Shi, H., Zhu, R., Li, L., Qin, B., Kang, L., Chen H. and Guan H. (2018) Inhibition of YAP ameliorates choroidal neovascularization via inhibiting endothelial cell proliferation. Mol. Vis. 24, 83-93.
7 Ferrara, N. (2004) Vascular endothelial growth factor: basic science and clinical progress. Endocr. Rev. 4, 581-611.   DOI
8 Ferrara, N. and Adamis, A. P. (2016) Ten years of anti-vascular endothelial growth factor therapy. Nat. Rev. Drug. Discov. 6, 385-403.   DOI
9 Ferrara, N., Gerber, H. P. and LeCounter, J. (2003) The biology of VEGF and its receptors. Nat. Med. 6, 669-676.
10 Ferrara, N., Mass, R. D., Campa, C. and Kim, R. (2007) Targeting VEGF-A to treat cancer and age-related macular degeneration. Annu. Rev. Med. 58, 491-504.   DOI
11 Ferrara, N. (2010) Vascular endothelial growth factor and age-related macular degeneration: from basic science to therapy. Nat. Med. 16, 1107-1111.   DOI
12 Grisanti, S. and Tatar, O. (2008) The role of vascular endothelial growth factor and other endogenous interplayers in age-related macular degeneration. Prog. Retin. Eye. Res. 24, 372-390.   DOI
13 Hernandez-Zimbron, L. F., Zamora-Alvarado, R., Ochoa-De, la. Paz. L., Velez-Montoya, R., Zenteno, E., Gulias-Canizo, R., Quiroz-Mercado, H. and Gonzalez-Salinas, R. (2018) Age-related macular degeneration: New paradigms for treatment and management of AMD. Oxid. Med. Cell. Longev. 1, 8374647.
14 Hofer, E. and Schweighofer, B. (2007) Signal transduction induced in endothelial cells by growth factor receptors involved in angiogenesis. Thromb. Haemost. 97, 355-363.   DOI
15 Holz, F. G., Schmitz-Valckenberg, S. and Fleckenstein, M. (2014) Recent developments in the treatment of age-related macular degeneration. J. Clin. Invest. 124, 1430-1438.   DOI
16 Jo, D. H., Kim, J. H., Yang, W., Kim, H., Chang, S., Kim, D., Chang, M., Lee, K., Chung, J. and Kim, J. H. (2017) Anti-complement component 5 antibody targeting MG4 domain inhibits choroidal neovascularization. Oncotarget 8, 45506-45516.   DOI
17 Kim, J., Kim, T. E., Kim, J. A., Yun, J. H., Sohn, S., Shim, S. R., Lee, S. H. and Kim, S. J. (2014) Intravitreal tanibirumab, a fully human monoclonal antibody against vascular endothelial growth factor receptor 2, partially suppresses and regresses laser-induced choroidal neovascularization in a rat model. J. Ocul. Pharmacol. Ther. 10, 847-853.
18 Karar, J. and Maity, A. (2011) PI3K/Akt/mTOR pathway in angiogenesis. Front. Mol. NeuroSci. 4, 51.   DOI
19 Kashani, A. H., Lebkowski, J. S., Rahhal, F. M., Avery, R. L., Salehi-Had, H., Dang, W., Lin, C. M., Mitra, D., Zhu, D., Thomas, B. B., Hikita, S. T., Pennington, B. O., Johnson, L. V., Clegg, D. O., Hinton, D. R. and Humayun, M. S. (2018) A bioengineered retinal pigment epithelial monolayer for advanced, dry age-related macular degeneration. Sci. Transl. Med. 10, 435.
20 Kauppinen, A., Jussi, J., Paterno., Blasiak, J., Salminen, A. and Kaarniranta, K. (2016) Inflammation and its role in age-related macular degeneration. Cell. Mol. Life. Sci. 73, 1765-1786.   DOI
21 Klein, R., Klein, B. E., Knudtson, M. D., Wong, T. Y., Cotch, M. F., Liu, K., Burke, G., Saad, M. F. and Jacobs, D. R., Jr. (2006) Prevalence of age-related macular degeneration in 4 racial/ethnic groups in the multi-ethnic study of atherosclerosis. Ophthlamology 113, 373-380.   DOI
22 Klein, R., Klein, B. E., Knudtson, M. D., Meuer, S. M., Swift, M. and Gangnon, R. E. (2007) Fifteen-year cumulative incidence of age-related macular degeneration: the beaver dam eye study. Ophthalmology 114, 253-262.   DOI
23 Lambert, V., Lecomte, J., Hansen, S., Blacher, S., Conzalez, M. L., Struman, I., Sounni, N. E., Rozet, E., de, Tullio, P., Foidart, J. M., Rakic, J. M. and Noel, A. (2013) Laser-induced choroidal neovascularization model to study age-related macular degeneration in mice. Nat. Protoc. 11, 2197-2211.
24 Miller, J. W., Adamis, A. P., Shima, D. T., D'Amore, P. A., Moulton, R. S., O'Reilly, M. S., Folkman, J., Dvorak, H. F., Brown, L. F., Berse, B., Yeo, T.-K. and Yeo, K.-T. (1994) Vascular endothelial growth factor/vascular permeability factor is temporally and spatially correlated with ocular angiogenesis in a primate model. Am. J. Pathol. 145, 574-584.
25 Langenkamp, E. and Molema, G. (2009) Microvascular endothelial cell heterogeneity: general concepts and pharmacological consequences for anti-angiogenic therapy of cancer. Cell. Tissue. Res. 335, 205-222.   DOI
26 Liu, M., Kluger, M. S., D'Alessio, A., Garcia-Cardena, G. and Pober, J. S. (2008) Regulation of arterial-venous differences in tumor necrosis factor responsiveness of endothelial cells by anatomic context. Am. J. Pathol. 72, 1088-1099.
27 Miler, J. W., Le, Couter, J., Strauss, E. C. and Ferrara, N. (2013) Vascular endothelial growth factor a in intraocular vascular disease. Ophthalmology 120, 106-114.   DOI
28 Mitchell, P., Liew, G., Gopinath, B. and Wong, T. Y. (2018) Age-related macular degeneration. Lancet 392, 1147-1159.   DOI
29 Park, M., Choi, S., Kim, S., Kim, J., Lee, D. K., Park, W., Kim, T., Jung, J., Hwang, J. Y., Won, M. H., Ryoo, S., Kang, S. G., Ha, K. S., Kwon, Y. G. and Kim, Y. M. (2019) NF-${\kappa}B$-responsive miR-155 induces functional impairment of vascular smooth muscle cells by downregulating soluble guanylyl cyclase. Exp. Mol. Med. 51, 17.   DOI
30 Neves, Cardoso, P., Pinheiro, A. F., Meira, J., Pedrosa, A. C., Falcao, M. S., Pinheiro-Costa,J., Falcao-Reis, F. and Carneiro, A. M. (2017) Switch to aflibercept in the treatment of neovascular AMD: long-term results. J. Ophthalmol. 2017, 6835782.
31 Park, U. C., Shin, J. Y., McCarthy, L. C., Kim, S. J., Park, J. H., Chung, H. and Yu, H. G. (2014) Pharmacogenetic associations with long-term response to anti-vascular endothelial growth factor treatment in neovascular AMD patients. Mol. Vis. 20, 1680-1694.
32 Angkawinitwong, U., Awwad, S., Khaw, P. T., Brocchini, S. and Williams, G. R. (2017) Electrospun formulations of bevacizumab for sustained release in the eye. Acta Biomater. 64,126-136.   DOI
33 Aiello, L. P., Avery, R. L., Arrigg, P. G., Keyt, B. A., Jampel, H. D., Shah, S. T., Pasquale, L. R., Thieme, H., Iwamoto, M. A., Park, J. E., Nguyen, H. V., Aiello, L. M., Ferrara, N. and King, G. L. (1994) Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N. Engl. J. Med. 331, 1480-1487.   DOI
34 Aiello, L. P., Pierce, E. A., Foley, E. D., Takagi, H., Chen, H., Riddle, L., Ferrara, N., King, G. L. and Smith, L. E. (1995) Suppression of retinal neovacscularization in vivo by inhibition of vascular endothelial growth factor (VEGF) using soluble VEGF-receptor chimeric proteins. Proc. Natl. Acad. Sci. U.S.A. 92, 10457-10461.   DOI
35 Aird, W. C. (2006) Mechanisms of endothelial cell heterogeneity in health and disease. Circ. Res. 98,159-162.   DOI
36 Semeraro, F., Morescalchi, F., Duse, S., Parmeggiani, F., Gambicorti, E. and Costagliola, C. (2013) Aflibercept in wet AMD: specific role and optimal use. Drug. Des. Devel. Ther. 7, 711-722.
37 Arrieta, O., Zatarain-Barron, Z. L., Cardona, A. F., Carmona, A. and Lopez-Mejia, M. (2017) Ramucirumab in the treatment of non-small cell lung cancer. Expert. Opin. Drug. Saf. 5, 637-644.
38 Aziz, M. A., Serya, R. A., Lasheen, D. S., Abdel-Aziz, A. K., Esmat, A., Mansour, A. M., Singab, A. N. and Abouzid, K. A. (2016) Discovery of potent VEGFR-2 inhibitors based on Furopyrimidine and thienopyrimidne scaffolds as cancer targeting agents. Sci. Rep. 6, 24460.   DOI
39 Baek, Y. Y., Lee, D. K., Kim, J., Kim, J. H., Park, W., Kim, T., Han, S., Jeoung, D., You, J. C., Lee, H., Won, M. H., Ha, K. S., Kwon, Y. G. and Kim, Y. M. (2017) Arg-Ley-Tyr-Glu tetrapeptide inhibits tumor progression by suppressing angiogenesis and vascular permeability via VEGF receptor-2 antagonism. Oncotarget. 14, 11763-11777.
40 Pierce, E. A., Avery, R. L., Foley, E. D., Aiello, L. P. and Smith, L. E. (1995) Vascular endothelial growth factor/vascular permeability factor expression in a mouse model of retinal neovascularization. Proc. Natl.Acad. Sci. U.S.A. 92, 905-909.   DOI
41 Shah, R. S., Soetikno, B. T., Lajko, M. and Fawzi, A. A. (2015) A mouse model for laser-induced choroidal neovascularization. J. Vis. Exp. 106, e53502.
42 Shibuya, M. (2006) Vascular endothelial growth factor receptor-1 (VEGFR-1/Flt1): a dual regulator for angiogenesis. Angiogenesis 9, 225-230.   DOI
43 Shi, F., Wang, Y. C., Zhao, T. Z., Zhang, S., Du, T. Y., Yang, C. B., Li, Y. H. and Sun, X. Q. (2012) Effects of simulated microgravity on human umbilical vein endothelial cell angiogenesis and role of the PI3K-Akt-eNOS signal pathway. PLoS ONE 7, e40365.   DOI
44 Veloso, C. E., de, Almeida, L. N., Recchia, F. M., Pelayes, D. and Nehemy, M. B. (2014) VEGF gene polymorphism and response to intravitreal ranibizumab in neovascular age-related macular degeneration. Ophthalmic. Res. 51, 1-8.   DOI
45 Simo, R. and Hernandez, C. (2008) Intravitreous anti-VEGF for diabetic retinopathy: hopes and fears for a new therapeutic strategy. Diabetologia 9, 1574-1580.   DOI
46 Spaide, R. F., Laud, K., Fine, H. F., Klancnik, J. M., Jr., Meyerle, C. B., Yannuzzi, L. A., Sorenson, J., Slakter, J., Fisher, Y. L. and Coonet, M. J. (2006) Intravitreal bevacizumab treatment of choroidal neovascularization secondary to age-related macular degeneration. Retina 26, 383-390.   DOI
47 Taimeh, Z., Loughran, J., Birks, E. J. and Bolli, R. (2013) Vascular endothelial growth factor in heart failure. Nat. Rev. Cardiol. 9, 519-530.
48 Campochiaro, P. A., Aiello, L. P. and Rosenfeld, P. J. (2016) Anti-vascular endothelial growth factor agents in the treatment of retinal disease: from bench to bedside. Ophthalmology 123, S78-S88.   DOI
49 Baek, Y. Y., Lee, D. K., So, J. H., Kim, C. H., Jeoung, D., Lee, H., Choe, J., Won, M. H., Ha, K. S., Kwon, Y. G. and Kim, Y. M. (2015) The tetrapeptide Arg-Leu-Tyr-Glu inhibits VEGF-induced angiogenesis. Biochem. Biophys. Res. Commun. 463, 532-537.   DOI
50 Bee, Y. S., Ma, Y. L., Chen, J., Tsai, P. J., Sheu, S. J., Lin, H. C., Huang, H., Liu, G. S. and Tai, M. H. (2018) Inhibition of experimental choroidal neovascularization by a novel peptide derived from calreticulin anti-angiogenic domain. Int. J. Mol. Sci. 19, 10.   DOI