• Title/Summary/Keyword: benzodiazepine receptor

Search Result 55, Processing Time 0.03 seconds

Steroidogenic acute regulatory protein (StAR) and peripheral-type benzodiazepine receptor (PBR) are decreased in human apoptotic embryos

  • Lee, Hyo-Jin;Kim, Jin-Hee;Yang, Hyun-Won
    • Animal cells and systems
    • /
    • v.15 no.3
    • /
    • pp.211-218
    • /
    • 2011
  • Fragmentation in human pre-implantation embryos has been suggested as the process of apoptosis. We have previously demonstrated a direct relationship between the increased reactive oxygen species (ROS) and apoptosis in human pre-implantation embryos. ROS is known to suppress the function of mitochondria in which steroidogenic acute regulatory protein (StAR) and peripheral-type benzodiazepine receptor (PBR) are presented. Therefore, the purpose of this study was to examine the expression of StAR and PBR in human pre-implantation embryos and to evaluate whether reduction of these proteins is associated with apoptosis. Apoptosis was detected by annexin V-fluorescein isothiocyanate (FITC) and mitochondrial membrane potential was measured by 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethyl-benzimidazolyl-carbocyanine iodide (JC-1). Immunofluorescence staining and Western blotting were applied to examine the expression of StAR and PBR in the embryos. Lipid droplets in the embryos were stained with Oil Red O. The fragmented pre-implantation embryos were stained with annexin V-FITC, but not the normal ones. The mitochondria with active membrane potential were present less in the fragmented embryos compared with the non-fragmented embryos. We also confirmed that both StAR and PBR were expressed in the embryos and their expression levels were lower in the fragmented ones. In addition, the number and size of lipid droplets were increased in the fragmented embryos. The present study provides evidence that reduction of StAR and PBR in human pre-implantation embryos is associated with an increase in the lipid droplets leading to apoptosis.

Pharmacodynamic Interactions of Diazepam and Flumazenil on Cortical Eeg in Rats (흰쥐 대뇌피질의 뇌파에 대한 diazepam 및 flumazenil의 약력학적 상호작용)

  • 이만기
    • Biomolecules & Therapeutics
    • /
    • v.7 no.3
    • /
    • pp.242-248
    • /
    • 1999
  • Diazepam, a benzodiazepine (BDZ) agonist, produces sedation and flumazenil, a BDZ antagonist, blocks these actions. The aim of this study was to examine the effects of BDZs on cortical electroencephalogram (EEG) in rats. The recording electrodes were implanted over the frontal and parietal cortices bilaterally, and the reference and ground electrodes over cerebellum under ketamine anesthesia. To assess the effects of diazepam and flumazenil, rats were injected with diazepam (1 mgHg, i.p.) and/or flumazenil ( 1 mg/kg, i.p.), and the EEG was recorded before and after drugs. Normal awake had theta peak in the spectrum and low amplitude waves, while normal sleep showed large amplitude of slow waves. The powers of delta, theta and alpha bands were increased during sleep compared with during awake. Diazepam reduced the mobility of the rat and induced sleep with intermittent fast spindles and large amplitude of slow activity, and it produced broad peak over betaL band and increased the power of gamma band, which were different from EEG patterns in normal sleep. Saline injection awakened rats and abolished fast spindles for a short period about 2-5 min from EEG pattern during diazepam-induced sleep. Flumazenil blocked both diazepam-induced sleep and decreased the slow activities of delta, theta, alpha and betaL, but not of gamma activity for about 10 min or more. This study may indicate that decrease in power of betaL and betaH bands can be used as the measure of central action of benzodiazepines, and that the EEG parameters of benzodiazepines have to be measured without control over the behavioral state by experimenter.

  • PDF

Sedative-Hypnotic and Receptor Binding Studies of Fermented Marine Organisms

  • Joung, Hye-Young;Kang, Young Mi;Lee, Bae-Jin;Chung, Sun Yong;Kim, Kyung-Soo;Shim, Insop
    • Biomolecules & Therapeutics
    • /
    • v.23 no.5
    • /
    • pp.479-485
    • /
    • 2015
  • This study was performed to investigate the sedative-hypnotic activity of ${\gamma}$-aminobutyric acid (GABA)-enriched fermented marine organisms (FMO), including sea tangle (FST) and oyster (FO) by Lactobacillus brevis BJ20 (L. brevis BJ20). FST and FO were tested for their binding activity of the $GABA_A$-benzodiazepine and 5-$HT_{2C}$ receptors, which are well-known molecular targets for sleep aids. We also measured the sleep latency and sleep duration during pentobarbital-induced sleep in mice after oral administration of FST and FO. In $GABA_A$ and 5-$HT_{2C}$ receptor binding assays, FST displayed an effective concentration-dependent binding affinity to $GABA_A$ receptor, similar to the binding affinity to 5-$HT_{2C}$ receptor. FO exhibited higher affinity to 5-$HT_{2C}$ receptor, compared with the $GABA_A$ receptor. The oral administration of FST and FO produced a dose-dependent decrease in sleep latency and increase in sleep duration in pentobarbital-induced hypnosis. The data demonstrate that FST and FO possess sedativehypnotic activity possibly by modulating $GABA_A$ and 5-$HT_{2C}$ receptors. We propose that FST and FO might be effective agents for treatment of insomnia.

Effect of Diazepam on the Oxytocin Induced Contraction of the Isolated Rat Uterus (Oxytocin의 자궁수축작용에 미치는 Diazepam의 영향)

  • Park, Yoon-Kee;Lee, Sung-Ho;Kwon, Oh-Cheol;Ha, Jeoung-Hee;Lee, Kwang-Youn;Kim, Won-Joon
    • Journal of Yeungnam Medical Science
    • /
    • v.9 no.2
    • /
    • pp.359-381
    • /
    • 1992
  • This study was designed to investigate the effect of diazepam on the spontaneous contraction and oxytocin induced contraction of the isolated rat uterus. Female rat(Sprague-Dawley) pretreated with oophorectomy and 4 days administration of estrogen, weighing about 200 g, was sacrificed by cervical dislocation, and the uteruses were isolated. A longitudinal muscle strip was placed in temperature controlled($37^{\circ}C$) muscle chamber containing Locke's solution and myographied isometrically. Diazepam inhibited the spontaneous contraction and oxytocin induced contraction of the isolated rat uterus in a concentration-dependent manner. GABA, muscimol, a GABA A receptor agonist, bicuculline, a competitive GAGA A receptor antagonist, picrotoxin, a non competitive GABA A receptor antagonist, baclofen, a GABA B receptor agonist, and delta-aminovaleric acid, a GABA B receptor antagonist, did not affect on the spontaneous and oxytocin induced contraction of the isolated rat uterus. The inhibitory actions of diazepam on the spontaneous and oxytocin induced contraction were not affected by all the GABA receptor agonists and antagonists, but exceptionally potentiated by bicuculline. This potentiation-effect by bicuculline was not antagonized by muscimol. In normal calcium PSS, addition of calcium restored the spontaneous contraction preinhibited by diazepam and recovered the contractile of oxytocin preinhibited by diazepam. A23187, a calcium inophore, enhanced the restoration of both the spontaneous and oxytocin induced contraction by addition of calcium. In calcium-free PSS, diazepam suppressed the restoration of spontaneous motility by addition of calcium but allowed the recovery of spontaneous motility to a considerable extent. Diazepam could not inhibit some development of contractility by oxytocin in calcium-free PSS, but inhibited the increase in contractility by subsequent addition of calcium. These results suggest that the inhibitory action of diazepam on the rat uterine motility does not depend on or related to GABA receptors and that diazepam inhibits the extracellular calcium influx to suppress the spontaneous and oxytocin induced contractilities.

  • PDF

THE EFFECTS OF DIAZEPAM ON THE CARBACHOL INDUCED CONTRACTION OF THE ISOLATED RAT ILEUM (Diazepam이 흰쥐 회장 평활근의 Carbachol 유발 수축에 미치는 영향)

  • Kim, Jung-Ok;Kwon, Oh-Cheol;Ha, Jeoung-Hee;Lee, Kwang-Youn;Kim, Won-Joon
    • Journal of Yeungnam Medical Science
    • /
    • v.6 no.2
    • /
    • pp.13-22
    • /
    • 1989
  • To investigate the effect of diazepam on the contractility of the intestinal smooth muscle, longitudinal muscle strip isolated from rat ileum was prepared for myography in isolated organ bath. 1) Basal tone of ileal muscle was reduced by diazepam concentration-dependently. 2) Higher concentrations(30 and 100 microM) of diazepam inhibited(p<0.05, p<0.001) the carbachol-induced contraction in a concentration-dependent manner ; but lower concentration of diazepam(10 microM) enhanced(p<0.05). 3) Histamine-induced contraction was inhibited by pretreatment with diazepam in a concentration-dependent manner. 4) $Ca^{++}$-induced tension recovery in calcium-free solution was inhibited in the presence of diazepam concentration-dependently. These results suggest diazepam reduces the contractility of the longitudinal muscle isolated from rat ileum via interference with influx of calcium into the muscle cells.

  • PDF

Apoptosis and Peripheral Benzodiazepin Receptor (PBR) Expression in Human Granulosa-Luteal Cells by GnRH-agonist (GnRH-agonist에 의한 인간 과립-황체화 세포의 세포사멸과 PBR 단백질의 발현)

  • Kim, Sei-Kwang;Youm, Yun-Hee;Yoon, Jeong-Mi;Bai, Sang-Wook;Yang, Hyun-Won;Cho, Dong-Jae;Yoon, Yong-Dal;Song, Chan-Ho
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.31 no.2
    • /
    • pp.83-94
    • /
    • 2004
  • Objective: To investigate whether GnRH-agonist (GnRH-Ag) using in IVF-ET affects apoptosis of human granulosa-luteal cells and expression of peripheral benzodiazepine receptor (PBR) protein involved in the apoptosis of the cells. Methods: Granulosa-luteal cells obtained during oocyte retrieval were cultured and treated with $10^{-5}M$ GnRH-Ag. Apoptosis of the cells by the treatment was confirmed using DNA fragmentation analysis 24 h after culture. The presence of PBR protein within the cells was examined by immunofluorescence staining and the expression of the protein was analyzed by Western blotting. In addition, it was measured for progesterone and nitric oxide (NO) produced by granulosa-luteal cells after GnRH-Ag treatment. To evaluate the relationship between NO production and PBR expression, sodium nitroprusside (SNP) as a NO donor was added in media and investigated the expression of PBR protein by Western blotting. Results: Apoptosis increased in the granulosa-luteal cells 24 h after GnRH-Ag treatment, whereas the expression of PBR protein significantly decreased. Furthermore, the production of progesterone and nitric oxide (NO) by the cells significantly fell from 12 h after the treatment. In the results of Western blotting after SNP treatment, the expression of PBR protein increased in the treatment with SNP alone to the granulosa-luteal cells, but was suppressed in the treatment with GnRH-Ag and SNP. Additionally, the staining result of PBR protein in the cells showed the even distribution of it through the cell. Conclusion: These results demonstrate that GnRH-Ag treatment induces apoptosis, decreasing expression of PBR protein and NO production in human granulosa-luteal cells. The present study suggests that one of the apoptosis mechanism of human granulosa-luteal cells by GnRH-Ag might be a signal transduction pathway via NO and PBR.

In vitro Anti-proliferative Characteristics of Flavonoids and Diazepam on MDA-MB-231 Breast Cancer Cells (Flavonoid류와 diazepam의 시험관 내 MDA-MB-231 유방암세포 증식 억제 효과)

  • Kim, Ji-Kwan;Lee, Maan-Gee;Lee, Jae-Tae;Ha, Jeoung-Hee
    • Journal of Life Science
    • /
    • v.19 no.8
    • /
    • pp.1009-1015
    • /
    • 2009
  • The beneficial use of sedatives is often required for medically ill patients. This study examined the effect of plant flavonoids and diazepam peripheral-type benzodiazepine receptor (PBR) activation and glucose utilization in breast cancer cells, along with their interactions. In estrogen receptor negative MDA-MB-231 cells, the anti-proliferative activity of fisetin (3,7,3',4'-tetrahydroxyflavone) and diazepam was more prominent than in estrogen receptor positive MCF-7 cells. Unlike PBR ligands, treatment with $10^{-6}$ M concentration of diazepam for 3 days exhibited anti-proliferative effects, while similar to apigenin (4',5,7-Trihydroxyflavone) and fisetin, diazepam hardly affected the PBR mRNA expression by MDA-MB-231 cells. Treatment with $10^{-6}$ M concentration of flavonoids and diazepam for 3 days inhibited the glucose utilization of MDA-MB-231 cells. Treatment with $10^{-6}$ M concentration of flavonoids and diazepam for 6 days showed increased cytotoxicity and reduced the PBR mRNA expression of the MDA-MB-231 cells. Apigenin enhanced diazepam-induced anti-proliferative effects on the MDA-MB-231 cells as well. All together, this study showed the in vitro anti-proliferative activity of flavonoids and diazepam on MDA-MB-231 breast cancer cells, plus additive enhancements. In conclusion, this study provides experimental basis for advanced trials in the future.

Isolation of a sleep-promoting compound from Polygonatum sibiricum rhizome

  • Jo, Kyungae;Kim, Hoon;Choi, Hyeon-Son;Lee, Seung-Su;Bang, Myun-Ho;Suh, Hyung Joo
    • Food Science and Biotechnology
    • /
    • v.27 no.6
    • /
    • pp.1833-1842
    • /
    • 2018
  • The aim of this study was to identify sleep-promoting substance from Polygonatum sibiricum rhizome extract (PSE) with the regulation of sleep architecture. PSE showed a decrease in sleep latency time and an increase in the sleeping time. In the electroencephalography analysis of rats, PSE (150 mg/kg) showed an increase of non-rapid eye movement by 38% and a decrease of rapid eye movement by 31% compared to the control. This sleep-promoting activity was found to be involved in the $GABA_A$-BDZ receptor. The chemical structure of the pure compound was determined by the $^1H$ and $^{13}C$ nuclear magnetic resonance spectroscopy and gas chromatography mass spectrometry analysis; active compound was glyceryl-1-monolinoleate. The commercial standard glyceryl-1-monolinoleate showed a similar inhibitory concentration on [$^3H$]-flumazenil binding to $GABA_A$-BDZ receptors with final active fraction of PSE. The results indicate that glyceryl-1-monolinoleate is a major active compound responsible for the PSE-derived sleep promotion.

Comparison of Effects of Zolpidem, Triazolam, and Placebo on the Insomnia of Schizophrenic Inpatients. (Zolpidem, Triazolam 및 위약이 입원한 정신분열병 환자의 불면에 미치는 영향에 대한 비교연구)

  • Park, So-Young;Sohn, Jin-Wook
    • Sleep Medicine and Psychophysiology
    • /
    • v.4 no.2
    • /
    • pp.181-190
    • /
    • 1997
  • Zolpidem is a relatively new, short-acting, rapid onset, and nonbenzodiazepine hypnotics. Zolpidem selectively binds to the central benzodiazepine 1 (BZI) receptor subtype. The present study was designed to compare the hypnotic effects of zolpidem (10 mg), triazolam (0.25 mg), and placebo in 22 schizophrenic inpatients. Zolpidem, triazolam, and placebo were administered orally in a randomized, double-blind design. Compared with placebo, zolpidem and triazolam significantly decreased sleep latency (p<0.05), increased total sleep time (p<0.05), and increased improvement of satisfaction of sleep (p<0.05). Zolpidem decreased the number of awakenings significantly in comparison with placebo (p<0.05), but triazolam did not. In addition, both drugs were well tolerated and did not produce severe side effects. These results suggest that zolpidem is effective for transient insomnia of schizophrenic inpatients and zolpidem is superior to triazolam in hypnotic effect.

  • PDF

Synthesis of dimeric fluorescent TSPO ligand for detection of glioma

  • Tien Tan Bui;Hee-Kwon Kim
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.7 no.1
    • /
    • pp.56-65
    • /
    • 2021
  • TSPO, an 18-kDa translocator protein, is a peripheral-type benzodiazepine receptor that has been associated to a variety of biological activities such as apoptosis, steroidogenesis, and cell proliferation. Because TSPO overexpression has been found in various forms of cancer, it has recently become one of the most appealing biological targets for cancer therapies and detection. In order to create new optical imaging agents for improved diagnostics, we synthesized a novel dimeric fluorescent TSPO ligand based on PRB28 structure and SCy5.5. Following the preparation of the novel TSPO ligand, in vivo and ex vivo imaging tests were performed to examine the tumor uptake characteristics of the fluorescent TSPO ligand in a glioma animal model, and it was found that novel TSPO ligand was accumulated in glioma. These results suggested that novel dimeric fluorescent TSPO ligand will be applied to detect glioma.