• Title/Summary/Keyword: bending rigidities

Search Result 31, Processing Time 0.018 seconds

Effect of Pile Cap Flexibility on the Response of Pile Group Supported Column (교대를 지지하는 군말뚝의 캡강성효과)

  • Jeong, Sang-Seom;Won, Jin-Oh;Kim, Young-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.9
    • /
    • pp.39-49
    • /
    • 2007
  • The load deformation behavior of the cap-pile-soil system is investigated, based on numerical analysis. Special attention is given to consideration of pile cap flexibility. Rigid pile cap analysis and flexible cap analysis were conducted for comparison. A numerical method that takes into account the coupling between the rigidities of the piles, the cap, and the column has been introduced to analyze the response of pile group supported columns. The prediction of the lateral loads and bending moments in the pile cap is much more conservative for a flexible cap than for a rigid cap.

Analysis of Fracture Risk due to Alterations of Bone Quality by Metastatic Bone Tumor (전이성 골암으로 인한 골질 변화와 이로 인한 골절 위험성 분석)

  • Lim, Dohyung
    • Journal of Biomedical Engineering Research
    • /
    • v.33 no.4
    • /
    • pp.213-222
    • /
    • 2012
  • While much has been learned about the mechanisms of metastatic spread of cancer to bone, there has been little headway in establishing guidelines for monitoring the alteration in bone quality and estimating fracture risk. The aims of this study are, therefore, 1) to evaluate bone quality induced by metastatic bone tumor by analyzing the characteristics on bone microarchitecture and degree of bone mineralization and 2) analyze fracture risk increased secondary to the bone quality changes by metastatic bone tumor through calculating mechanical rigidities based on in-vivo micro CT images. For this study, eighteen female SD rats (12 weeks old, approximate 250 g) were randomly allocated in Sham and Tumor groups. W256 (Walker carcinosarcoma 256 malignant breast cancer cell) was inoculated in the right femur (intraosseous injection) in Tumor group, while 0.9% NaCl (saline solution) was injected in Sham group. The right hind limbs of all rats were scanned by in-vivo micro-CT to acquire structural parameters and degree of bone mineralization at 0 week, 4 weeks, 8 weeks, and 12 weeks after surgery. At the same time, urine was collected by metabolic cages for a biochemical marker test in order to evaluate bone resorption. Then, bone metastasis had been directly identified by positron emission tomography. Finally, axial, bending and torsional rigidities had been calculated based on in-vivo micro CT images for predict fracture risk. The results of this study showed that metastatic bone tumor might induce significant decrease in bone quality and increase of fracture risk. This study may be helpful to monitoring a degree of bone metastasis and predicting fracture risk due to metastatic bone tumor. In addition, this noninvasive diagnostic methodology may be utilized for evaluating other bone metabolic diseases such as osteoporosis.

Hydroelastic Response Characteristics of a Very Large Offshore Structures of Somisubmersible Type in waves (반잠수식 초대형 해양구조물의 파랑중 탄성응답특성)

  • Goo, Ja-Sam;Kim, Kyung-Tae;Hong, Bong-Ki
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.4 s.35
    • /
    • pp.19-27
    • /
    • 1999
  • To design a very large floating structure, such as a floating airport, we have to estimate the hydroelastic responses of a very large floating structure (VLFS) exactly. We developed the numerical method for estimating the hydroelastic responses of the VLFS. The developed numerical approach is based on a combination of the three-dimensional source distribution method, the wave interaction theory and the finite element method for structurally treating the space frame elements. The Numerical results of the hydroelastic responses and steady drift forces of a somisubmersible type offshore structure, which is supported by the 33(3 by 11) floating bodies, with various bending rigidities are illustrated.

  • PDF

Vibration of nonlocal perforated nanobeams with general boundary conditions

  • Eltaher, Mohamed A.;Mohamed, Norhan A.
    • Smart Structures and Systems
    • /
    • v.25 no.4
    • /
    • pp.501-514
    • /
    • 2020
  • This article presents a comprehensive model to investigate a free vibration and resonance frequencies of nanostructure perforated beam element as nano-resonator. Nano-scale size dependency of regular square perforated beam is considered by using nonlocal differential form of Eringen constitutive equation. Equivalent mass, inertia, bending and shear rigidities of perforated beam structure are developed. Kinematic displacement assumptions of both Timoshenko and Euler-Bernoulli are assumed to consider thick and thin beams, respectively. So, this model considers the effect of shear on natural frequencies of perforated nanobeams. Equations of motion for local and nonlocal elastic beam are derived. After that, analytical solutions of frequency equations are deduced as function of nonlocal and perforation parameters. The proposed model is validated and verified with previous works. Parametric studies are performed to illustrate the influence of a long-range atomic interaction, hole perforation size, number of rows of holes and boundary conditions on fundamental frequencies of perforated nanobeams. The proposed model is supportive in designing and production of nanobeam resonator used in nanoelectromechanical systems NEMS.

Analysis of Coupled Horizontal-Torsional Vibrations of Container Ships (콘테이너선의 수평-비틂연성진동 해석)

  • K.C.,Kim;S.J.,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.23 no.4
    • /
    • pp.1-10
    • /
    • 1986
  • A container ship, due to wide hatch openings, has characteristics of poor torsional rigidity, strong coupling of horizontal-torsional modes and significant discontinuity in the longitudinal variation of hull sections. In the mathematical formulation of the problem the hull is modeled as a beam and the transfer matrix method is utilized. The cross decks between cargo hatch opening are separated from the main hull and regarded as equivalent springs restraining torsion of hull. The effect of shear deformation of ship-side plating on torsion is taken into account in addition to St. Venant's and bending torsional rigidities. Compatibility requirements at cross section discontinuity are approximately considered. Developing the practical calculation procedure and the computer programs for application to an actual ship, some parametric studies on modeling methods of the cross deck, the compatibility condition, added-mass center etc. are out for the purpose of comparison.

  • PDF

Changes in Mechanical Properties, Hand, and Appearance according to Dyeing of Cotton, PET, Nylon, and Cotton Mixture Fabrics (면, 폴리에스테르, 나일론, 면 교직물의 염색후 역학특성, 태 그리고 봉제성 변화)

  • Jo, Gil-Su;Lee, Eun-Ju;Im, Ji-Yeong
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.20 no.6
    • /
    • pp.1138-1150
    • /
    • 1996
  • This study was carried out to investigate the effects of dyeing on the mechanical properties, primary hand, total hand value (THV), and total appearance value (TAV) of woven fabrics. Cotton, PET, nylon, cotton/PET, and cotton/nylon woven fabrics were used as test specimens. Each of fabric was dyed under the same conditions as the fabrics for sportswear which consumers have selected as best. Mechanical properties of specimens were measured by KES-FB system and primary hand and THV were calculated by equation KN -201-MDY and KN-301-WINTER respectively. TAV was calculated by KN (eq. 10). The results were as follows: 1. In mechanical properties. tensile energy increased when cotton and two cotton mixture fabrics were dyed and decreased when polyester and nylon fabrics were dyed. Bending rigidity and shear rigidity decreased after all fabrics were dyed except nylon and cotton/ nylon mixture fabrics showing higher rigidities. Cotton fabrics showed higher surface roughness while other fabrics did lower values after dyeing. 2. In evaluation of primary hand and total hand , four primary hands of cotton fabrics so decreased after dyeing that THV were lowered. Numeri, Fukurami, and Sofutosa in primary hand of polyester, cotton/polyester, and cotton/nylon fabrics and Koshi and Numeri of nylon fabrics increased after dyeing and therefore THV of four fabrics were improved. 3. Cotton and polyester fabrics showed higher TAV due to their lower bending and shear rigidity, while nylon and cotton/nylon fabrics did lower values due to their higher shear rigidity. 4. It was proposed that the method of dyeing or treatment for minimizing the decrease of THV of cotton fabrics and TAV of nylon fabrics should be developed.

  • PDF

Effect of Textile Care on Physical Properties and Biodegradability of Cellulose Fabrics (관리 방법에 따른 섬유소계 직물의 물리적 특성 변화 및 생분해성 평가)

  • 이혜원;박정희
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.25 no.1
    • /
    • pp.173-182
    • /
    • 2001
  • The physical properties and biodegradability of cellulose fabrics, such as cotton and rayon, are expected to vary with textile care. In this study cotton and rayon fabrics were washed repeatedly with detergents, bleaches, or softeners. The changes of physical properties were investigated by measuring retention of breaking strength, shrinkage, handle, and the fiber surface was observed by SEM. The biodegradability of fabrics was also estimated by soil burial test. The results were as follows. Cotton fabrics laundered repeatedly by detergents and bleaches lost virtually no strength. The breaking strength of the rayon fabrics decreased by about 17%∼25% after repeated launderings. Shrinkage in weft direction was much larger than that in warp direction. Bending rigidities of both fabrics decreased remarkably within 10 wash cycles. Shear rigidity in cotton fabrics increased continuously with repeated washing cycles, however, that in rayon fabrics did not show any change as washing went on. Friction coefficient increased in both fabrics after 10 wash cycles, and this is thought to be attributed to the wrinkle, interlocking of hairs, surface damage resulted from repeated washings. In cotton fabrics made of staple yarns, short hairs on the yarn surface entangled together with repeated launderings. This resulted in the continuous increase in % shrinkage, shear rigidity, friction coefficient. Rayon fabrics made of filament yarns, however, did not show this phenomenon. Softener treated fabrics showed the lowest values in bending rigidity, shear rigidity and friction coefficient because the cationic surfactants adsorbed on the fiber surface behaved like lubricants. The biodegradability of fabrics was noticeably affected by the composition of washing solutions. The fabrics washed with detergents and bleaches were decomposed faster than those washed with the others were and the cotton fabrics washed with detergents and softeners hardly degraded. The fabrics soiled with milk were decomposed almost completely and those soiled with Palmitic acid did not degrade greatly.

  • PDF

Effects of Pasternak foundation on the bending behavior of FG porous plates in hygrothermal environment

  • Bot, Ikram Kheira;Bousahla, Abdelmoumen Anis;Zemri, Amine;Sekkal, Mohamed;Kaci, Abdelhakim;Bourada, Fouad;Tounsi, Abdelouahed;Ghazwani, M.H.;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • v.43 no.6
    • /
    • pp.821-837
    • /
    • 2022
  • This research is devoted to study the effects of humidity and temperature on the bending behavior of functionally graded (FG) ceramic-metal porous plates resting on Pasternak elastic foundation using a quasi-3D hyperbolic shear deformation theory developed recently. The present plate theory with only four unknowns, takes into account both transverse shear and normal deformations and satisfies the zero traction boundary conditions on the surfaces of the functionally graded plate without using shear correction factors. Material properties of porous FG plate are defined by rule of the mixture with an additional term of porosity in the through-thickness direction. The governing differential equations are obtained using the "principle of virtual work". Analytically, the Navier method is used to solve the equations that govern a simply supported FG porous plate. The obtained results are checked by comparing the results determined for the perfect and imperfect FG plates with those available in the scientific literature. Effects due to material index, porosity factors, moisture and thermal loads, foundation rigidities, geometric ratios on the FG porous plate are all examined. Finally, this research will help us to design advanced functionally graded materials to ensure better durability and efficiency for hygro-thermal environments.

Performance Evaluation of Welded Joints for Single-Layer Latticed Domes through Joint Rigidity Test (단층 래티스 돔에 적용 가능한 용접 접합부의 휨실험을 통한 성능 평가)

  • Lee, Young Hak;Seo, Sang Hoon;Kim, Min Sook;Kim, Hee Cheul;Lee, Sung Min
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.5
    • /
    • pp.601-608
    • /
    • 2008
  • Joints of single-layer latticed domes show various flexural behaviors according to their shapes and connecting methods. Ball joints are relatively easy to apply and build while their rigidities are relatively small and have disadvantage in long span. Welded joints have many advantages in rigidity, internal force and long span. However few experimental studies have been performed. In this paper, improved welded joint for the single layer latticed domes was proposed through both analytical and experimental analyses. Length of inserted plates, thickness of inserted plates and hole of sub steel pipes were selected as parameters for experimental comparisons and defining the effects of the selected variables.

A parametric study on buckling loads and tension field stress patterns of steel plate shear walls concerning buckling modes

  • Memarzadeh, P.;Azhari, M.;Saadatpour, M.M.
    • Steel and Composite Structures
    • /
    • v.10 no.1
    • /
    • pp.87-108
    • /
    • 2010
  • A Steel Plate Shear Wall (SPSW) is a lateral load resisting system consisting of an infill plate located within a frame. When buckling occurs in the infill plate of a SPSW, a diagonal tension field is formed through the plate. The study of the tension field behavior regarding the distribution and orientation patterns of principal stresses can be useful, for instance to modify the basic strip model to predict the behavior of SPSW more accurately. This paper investigates the influence of torsional and out-of-plane flexural rigidities of boundary members (i.e. beams and columns) on the buckling coefficient as well as on the distribution and orientation patterns of principal stresses associated with the buckling modes. The linear buckling equations in the sense of von-Karman have been solved in conjunction with various boundary conditions, by using the Ritz method. Also, in this research the effects of symmetric and anti-symmetric buckling modes and complete anchoring of the tension field due to lacking of in-plane bending of the beams as well as the aspect ratio of plate on the behavior of tension field and buckling coefficient have been studied.