Browse > Article
http://dx.doi.org/10.12989/scs.2022.43.6.821

Effects of Pasternak foundation on the bending behavior of FG porous plates in hygrothermal environment  

Bot, Ikram Kheira (Industrial Engineering and Sustainable Development Laboratory, University of Rélizane, Faculty of Science & Technology, Mechanical Engineering Department)
Bousahla, Abdelmoumen Anis (Laboratoire de Modelisation et Simulation Multi-echelle, Universite de Sidi Bel Abbes)
Zemri, Amine (University of Relizane, Faculty of Science & Technology, Civil Engineering Department)
Sekkal, Mohamed (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department)
Kaci, Abdelhakim (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department)
Bourada, Fouad (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department)
Tounsi, Abdelouahed (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department)
Ghazwani, M.H. (Department of Mechanical Engineering, Faculty of Engineering, Jazan University)
Mahmoud, S.R. (GRC Department, Jeddah Community College, King Abdulaziz University)
Publication Information
Steel and Composite Structures / v.43, no.6, 2022 , pp. 821-837 More about this Journal
Abstract
This research is devoted to study the effects of humidity and temperature on the bending behavior of functionally graded (FG) ceramic-metal porous plates resting on Pasternak elastic foundation using a quasi-3D hyperbolic shear deformation theory developed recently. The present plate theory with only four unknowns, takes into account both transverse shear and normal deformations and satisfies the zero traction boundary conditions on the surfaces of the functionally graded plate without using shear correction factors. Material properties of porous FG plate are defined by rule of the mixture with an additional term of porosity in the through-thickness direction. The governing differential equations are obtained using the "principle of virtual work". Analytically, the Navier method is used to solve the equations that govern a simply supported FG porous plate. The obtained results are checked by comparing the results determined for the perfect and imperfect FG plates with those available in the scientific literature. Effects due to material index, porosity factors, moisture and thermal loads, foundation rigidities, geometric ratios on the FG porous plate are all examined. Finally, this research will help us to design advanced functionally graded materials to ensure better durability and efficiency for hygro-thermal environments.
Keywords
functionally graded materials; porosity; hygrothermal; thickness stretching; elastic foundation;
Citations & Related Records
Times Cited By KSCI : 35  (Citation Analysis)
연도 인용수 순위
1 Wattanasakulpong, N. and Ungbhakorn, V. (2014), "Linear and nonlinear vibration analysis of elastically restrained ends FGM beams with porosities", Aerosp. Sci. Technol., 32(1), 111-120. https://doi.org/10.1016/j.ast.2013.12.002.   DOI
2 Winkler, E. (1867), "Die Lehre von der Elastizitat and Festigkeit", Prag. Dominicus, 1867.
3 Zhou, D., Cheung, Y.K., Lo, S.H. and Au, F.T.K. (2004), "Threedimensional vibration analysis of rectangular thick plates on Pasternak foundation", Int. J. Numer. Methods. Eng., 59(10), 1313-1334. https://doi.org/10.1002/nme.915.   DOI
4 Zenkour, A.M. (2007), "Benchmark trigonometric and 3-D elasticity solutions for an exponentially graded thick rectangular plate", Arch. Appl. Mech. 77, 197-214. https://doi.org/10.1007/s00419-006-0084-y.   DOI
5 Ahmed, R.A., Fenjan, R.M. and Faleh, N.M. (2019), "Analyzing post-buckling behavior of continuously graded FG nanobeams with geometrical imperfections", Geomech. Eng., 17(2), 175-180. https://doi.org/10.12989/gae.2019.17.2.175.   DOI
6 Zenkour, A.M., Allam, M.N.M. and Radwan, A.F. (2014), "Effects of transverse shear and normal strains on FG plates resting on elastic foundations under hygro-thermo-mechanical loading", Int. J. Appl. Mech. 6(5), 1450063. https://doi.org/10.1142/S175882511450063X.   DOI
7 Beg, M.S., Khalid, H.M., Yasin, M.Y. and Hadji, L. (2021), "Exact third-order static and free vibration analyses of functionally graded porous curved beam", Steel Compos. Struct., 39(1), 1-20. https://doi.org/10.12989/SCS.2021.39.1.001.   DOI
8 Behravan Rad, A. and Shariyat, M. (2015), "Three-dimensional magneto-elastic analysis of asymmetric variable thickness porous FGM circular plates with non-uniform tractions and Kerr elastic foundations", Compos. Struct., 125, 558-574. https://doi.org/10.1016/j.compstruct.2015.02.049.   DOI
9 Bharath, H.S., Waddar, S., Bekinal, S.I., Jeyaraj, P. and Doddamani, M. (2020), "Effect of axial compression on dynamic response of concurrently printed sandwich", Compos. Struct., 113223. https://doi.org/10.1016/j.compstruct.2020.113223.   DOI
10 Abdalla, J.A., Ibrahim, A.M. (2006), "Development of a discrete Reissner-Mindlin element on Winkler foundation", Finite Elem. Anal. Des., 42(8-9), 740-748. https://doi.org/10.1016/j.finel.2005.11.004.   DOI
11 Akbas, S.D., Bashiri, A.H., Assie, A.E. and Eltaher, M.A. (2021), "Dynamic analysis of thick beams with functionally graded porous layers and viscoelastic support", J. Vib. Control, 27(13-14),1644-1655. https://doi.org/10.1177/1077546320947302.   DOI
12 Chen, D., Kitipornchai, S. and Yang, J. (2017a), "Dynamic response and energy absorption of functionally graded porous structures", Mater. Des., 140, 473-487. https://doi.org/10.1016/j.matdes.2017.12.019.   DOI
13 Bouazza, M., Becheri, T., Boucheta, A. and Benseddiq, N. (2019), "Bending behavior of laminated composite plates using the refined four-variable theory and the finite element method", Earthq. Struct., 17(3), 257-270. https://doi.org/10.12989/eas.2019.17.3.257.   DOI
14 Carrera, E., Brischetto, S., Cinefra, M. and Soave, M. (2011), "Effects of thickness stretching in functionally graded plates and shells", Compos. Part B, 42(2), 123-133. https://doi.org/10.1016/j.compositesb.2010.10.005.   DOI
15 Chen, D., Kitipornchai, S. and Yang, J. (2016), "Nonlinear free vibration of shear deformable sandwich beam with a functionally graded porous core", Thin-Wall. Struct., 107, 39-48. https://doi.org/10.1016/j.tws.2016.05.025.   DOI
16 Chen, D., Yang, J. and Kitipornchai, S. (2017b), "Nonlinear vibration and postbuckling of functionally graded graphene reinforced porous nanocomposite beams", Compos Sci Technol, 142, 235-245. https://doi.org/10.1016/j.compscitech.2017.02.008.   DOI
17 Chen, S., Zhang, Q. and Liu, H. (2021), "Dynamic response of double-FG porous beam system subjected to moving load", Eng. Comput., https://doi.org/10.1007/s00366-021-01376-w.   DOI
18 Derbale, A., Bouazza, M. and Benseddiq, N. (2021), "Analysis of the mechanical and thermal buckling of laminated beams by new refined shear deformation theory", Iran. J. Sci. Technol., Transactions Civil Eng., 45(1), 89-98. https://doi.org/10.1007/s40996-020-00417-6.   DOI
19 Al-Basyouni, K.S., Ghandourah, E., Mostafa, H.M. and Algarni, A. (2020), "Effect of the rotation on the thermal stress wave propagation in non-homogeneous viscoelastic body", Geomech. Eng., 21(1), 1-9. https://doi.org/10.12989/GAE.2020.21.1.001.   DOI
20 Faleh, N.M., Fenjan, R.M. and Ahmed, R.A. (2018), "Dynamic analysis of graded small-scale shells with porosity distributions under transverse dynamic loads", Europ. Phys. J. Plus, 133(9), 1-11. https://doi.org/10.1140/epjp/i2018-12152-5.   DOI
21 Alnujaie, A., Akbas, S.D., Eltaher, M.A. and Assie, A. (2021a), "Forced vibration of a functionally graded porous beam resting on viscoelastic foundation", Geomech. Eng., 24(1), 91-103. http://dx.doi.org/10.12989/gae.2021.24.1.091.   DOI
22 Attia, M.A. (2017), "On the mechanics of functionally graded nanobeams with the account of surface elasticity", Int. J. Eng. Sci., 115,73-101. https://doi.org/10.1016/j.ijengsci.2017.03.011.   DOI
23 Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., 30(6), 603-615. https://doi.org/10.12989/SCS.2019.30.6.603.   DOI
24 Barati, M.R. (2018), "A general nonlocal stress-strain gradient theory for forced vibration analysis of heterogeneous porous nanoplates", Eur. J. Mech. A Solids, 67, 215-230. https://doi.org/10.1016/j.euromechsol.2017.09.001.   DOI
25 Sahnoun, M., Ouinas, D., Benderdouche, N., Bouazza, M. and Vina, J. (2013), "Hygrothermal effect on stiffness reduction modeling damage evolution in cross-ply composite laminates", Adv. Mater. Res., 629, 79-84. https://doi.org/10.4028/www.scientific.net/AMR.629.79.   DOI
26 Selmi, A. (2020), "Exact solution for nonlinear vibration of clamped-clamped functionally graded buckled beam". Smart Struct. Syst., 26(3), 361-371. https://doi.org/10.12989/SSS.2020.26.3.361.   DOI
27 Shen, H.S. (2000), "Nonlinear analysis of simply supported Reissner-Mindlin plates subjected to lateral pressure and thermal loading and resting on two-parameter elastic foundations", Eng. Struct., 22(11), 1481-1493. https://doi.org/10.1016/S0141-0296(99)00086-3.   DOI
28 Shafiei, N., Mirjavadi, S.S., Mohasel Afshari, B., Rabby, S. and Kazemi, M. (2017), "Vibration of two dimensional imperfect functionally graded (2D-FG) porous nano-/micro-beams", Comput. Meth. Appl. Mech. Eng., 322, 615-632. https://doi.org/10.1016/j.cma.2017.05.007.   DOI
29 Shafiei, N., Mousavi, A. and Ghadiri, M. (2016), "On size-dependent nonlinear vibration of porous and imperfect functionally graded tapered microbeams", Int. J. Eng. Sci., 106, 42-56. https://doi.org/10.1016/j.ijengsci.2016.05.007.   DOI
30 Shen, H.S., Yang, J. and Zhang, L. (2001), "Free and forced vibration of Reissner-Mindlin plates with free edges resting on elastic foundations", J. Sound. Vib., 244(2), 299-320. https://doi.org/10.1006/jsvi.2000.3501.   DOI
31 Farzaneh Joubaneh, E., Mojahedin, A., Khorshidvand, A.R. and Jabbari, M. (2015), "Thermal buckling analysis of porous circular plate with piezoelectric sensor-actuator layers under uniform thermal load", J. Sandwich Struct. Mater., 17(1), 3-25. https://doi.org/10.1177/1099636214554172.   DOI
32 Feyzi, M.R. and Khorshidvand, A.R. (2017), "Axisymmetric postbuckling behavior of saturated porous circular plates", Thin-Wall. Struct., 112, 149-158. https://doi.org/10.1016/J.TWS.2016.11.026.   DOI
33 Hadji, L. and Avcar, M. (2021), "Nonlocal free vibration analysis of porous FG nanobeams using hyperbolic shear deformation beam theory", Adv. Nano Res., 10(3), 281-293. https://doi.org/10.12989/ANR.2021.10.3.281.   DOI
34 Huang, W. and Tahouneh, V. (2021), "Frequency study of porous FGPM beam on two-parameter elastic foundations via Timoshenko theory", Steel Compos. Struct., 40(1), 139-156. https://doi.org/10.12989/SCS.2021.40.1.139.   DOI
35 Hamed, M.A., Abo-Bakr, R.M., Mohamed, S.A. and Eltaher, M.A. (2020), "Influence of axial load function and optimization on static stability of sandwich functionally graded beams with porous core", Eng. Comput., 36(4), 1929-1946. https://doi.org/10.1007/s00366-020-01023-w.   DOI
36 Hamed, M.A., Sadoun, A.M. and Eltaher, M.A. (2019), "Effects of porosity models on static behavior of size dependent functionally graded beam", Struct. Eng. Mech., 71(1), 89-98. http://dx.doi.org/10.12989/sem.2019.71.1.089.   DOI
37 Han, J.B. and Liew, K.M. (1997), "Numerical differential quadrature method for Reissner/Mindlin plates on twoparameter foundations", Int. J. Mech. Sci., 39(9), 977-989. https://doi.org/10.1016/S0020-7403(97)00001-5.   DOI
38 Keleshteri, M.M. and Jelovica, J. (2021), "Nonlinear vibration analysis of bidirectional porous beams", Eng. Comput., https://doi.org/10.1007/s00366-021-01553-x.   DOI
39 Khorshidvand, A.R., Farzaneh Joubaneh, E., Jabbari, M. and Eslami, M.R. (2014), "Buckling analysis of a porous circular plate with piezoelectric sensor actuator layers under uniform radial compression", Acta Mech., 225, 179-193. https://doi.org/10.1007/s00707-013-0959-2.   DOI
40 Kitipornchai, S., Chen, D. and Yang, J. (2017), "Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets", Mater. Des., 116, 656-665. https://doi.org/10.1016/j.matdes.2016.12.061.   DOI
41 Pabst, W. and Gregorova, E. (2004a), "Effective elastic properties of alumina-zirconia composite ceramics: Part 2. Micromechanical modeling", CeramicsSilikaty, 48, 14-23.
42 Li, X., Wang, T., Liu, F. and Zhu, Z. (2021), "Computer simulation of the nonlinear static behavior of axially functionally graded microtube with porosity", Adv. Nano Res., 11(4), 437-451. https://doi.org/10.12989/ANR.2021.11.4.437.   DOI
43 Mojahedin, A., Farzaneh Joubaneh, E. and Jabbari, M. (2014), "Thermal and mechanical stability of a circular porous plate with piezoelectric actuators", Acta Mech., 225, 3437-3452. https://doi.org/10.1007/s00707-014-1153-x.   DOI
44 Mojahedin, A., Jabbari, M., Khorshidvand, A.R. and Eslami, M.R. (2016), "Buckling analysis of functionally graded circular plates made of saturated porous materials based on higher order shear deformation theory", Thin-Wall. Struct., 99, 83-90. https://doi.org/10.1016/j.tws.2015.11.008.   DOI
45 Pabst, W. and Gregorova, E. (2004b), "Mooney-type relation for the porosity dependence of the effective tensile modulus of ceramics", J. Mater. Sci., 39, 3213-3215. https://doi.org/10.1023/B:JMSC.0000025863.55408.c9.   DOI
46 Priyanka, R., Twinkle, C.M. and Pitchaimani, J. (2021), "Stability and dynamic behavior of porous FGM beam: influence of graded porosity, graphene platelets, and axially varying loads", Eng. Comput., https://doi.org/10.1007/s00366-021-01478-5.   DOI
47 Rachedi, M.A., Benyoucef, S., Bouhadra, A., Bachir Bouiadjra, R., Sekkal, M. and Benachour, A. (2020), "Impact of the homogenization models on the thermoelastic response of FG plates on variable elastic foundation", Geomech. Eng., 22(1), 65-80. https://doi.org/10.12989/gae.2020.22.1.065.   DOI
48 Rezaei, A.S. and Saidi, A.R. (2015), "Exact solution for free vibration of thick rectangular plates made of porous materials", Compos. Struct., 134, 1051-1060. https://doi.org/10.1016/j.compstruct.2015.08.125.   DOI
49 Rahmani, M. and Mohammadi, Y. (2021), "Vibration of two types of porous FG sandwich conical shell with different boundary conditions", Struct. Eng. Mech., 79(4), 401-413. https://doi.org/10.12989/SEM.2021.79.4.401.   DOI
50 Ramteke, P.M., Panda, S.K. and Sharma, N. (2019), "Effect of grading pattern and porosity on the eigen characteristics of porous functionally graded structure", Steel Compos. Struct., 33(6), 865-875. http://dx.doi.org/10.12989/scs.2019.33.6.865.   DOI
51 Rezaei, A.S. and Saidi, A.R. (2016), "Application of Carrera unified formulation to study the effect of porosity on natural frequencies of thick porous-cellular plates", Compos. B, 91, 361-370. https://doi.org/10.1016/j.compositesb.2015.12.050.   DOI
52 Rezaei, A.S. and Saidi, A.R. (2017), "Buckling response of moderately thick fluid-infiltrated porous annular sector plates", Acta Mech., 228, 3929-3945. https://doi.org/10.1007/s00707-017-1908-2.   DOI
53 Rostami, R. and Mohammadimehr, M. (2020), "Vibration control of rotating sandwich cylindrical shell-reinforced nanocomposite face sheet and porous core integrated with functionally graded magneto-electro-elastic layers", Eng. Comput., 1-14. https://doi.org/10.1007/s00366-020-01052-5.   DOI
54 Reissner, E. (1945), "The effect of transverse shear deformation on the bending of elastic plates", J. appl. Mech., A69-A77. https://doi.org/10.1115/1.4009435.   DOI
55 Yahea, H.T. and Majeed, W.I. (2021), "Thermal buckling of laminated composite plates using a simple four variable plate theory", J. Eng., 27(9), 1-19. https://doi.org/10.31026/j.eng.2021.09.01.   DOI
56 Safarpour, M., Rahimi, A., Alibeigloo, A., Bisheh, H. and Forooghi, A. (2021), "Parametric study of three-dimensional bending and frequency of FG-GPLRC porous circular and annular plates on different boundary conditions", Mech. Based Des. Struct. Machines, 49(5), 707-737. https://doi.org/10.1080/15397734.2019.1701491.   DOI
57 Wu, D., Liu, A., Huang, Y., Huang, Y., Pi, Y. and Gao, W. (2018), "Dynamic analysis of functionally graded porous structures through finite element analysis", Eng. Struct., 165, 287-301. https://doi.org/10.1016/j.engstruct.2018.03.023.   DOI
58 Xiang, Y. (2003), "Vibration of rectangular Mindlin plates resting on non-homogenous elastic foundations", Int. J. Mech. Sci., 45(6-7), 1229-1244. https://doi.org/10.1016/S0020-7403(03)00141-3.   DOI
59 Yang, B., Ding, H.J. and Chen, W.Q. (2012), "Elasticity solutions for functionally graded rectangular plates with two opposite edges simply supported", Appl. Math. Model., 36(1), 488-503. https://doi.org/10.1016/j.apm.2011.07.020.   DOI
60 Yang, J., Chen, D. and Kitipornchai, S. (2018), "Buckling and free vibration analyses of functionally graded graphene reinforced porous nanocomposite plates based on Chebyshev Ritz method", Compos. Struct., 193, 281-294. https://doi.org/10.1016/j.compstruct.2018.03.090.   DOI
61 Yas, M.H. and Tahouneh, V. (2012), "3-D Free vibration analysis of thick functionally graded annular plates on Pasternak elastic foundation via differential quadrature method (DQM)", Acta. Mech., 223(1), 43-62. https://doi.org/10.1007/s00707-011-0543-6.   DOI
62 Thai, H.T. and Choi, D.H. (2013), "A simple refined theory for bending, buckling, and vibration of thick plates resting on elastic foundation", Int. J. Mech. Sci., 73, 40-52. https://doi.org/10.1016/j.ijmecsci.2013.03.017.   DOI
63 Yaylaci, M. and Avcar, M. (2020), "Finite element modeling of contact between an elastic layer and two elastic quarter planes", Comput. Concrete, 26(2), 107-114. https://doi.org/10.12989/CAC.2020.26.2.107.   DOI
64 Yuksel, Y.Z. and Akbas, S.D. (2021), "Hygrothermal stress analysis of laminated composite porous plates", Struct. Eng. Mech., 80(1), 1-13. https://doi.org/10.12989/SEM.2021.80.1.001.   DOI
65 Thai, H.T. and Vo, T.P. (2013), "A new sinusoidal shear deformation theory for bending, buckling, and vibration of functionally graded plates", Appl. Math. Model. 37(5), 3269-3281. https://doi.org/10.1016/j.apm.2012.08.008.   DOI
66 Thanh, C.L., Nguyen, T.N., Vu, T.H., Khatir, S. and Abdel Wahab, M. (2020), "A geometrically nonlinear size-dependent hypothesis for porous functionally graded micro-plate", Eng. Comput., 1-12. https://doi.org/10.1007/s00366-020-01154-0.   DOI
67 Timesli, A. (2020), "Prediction of the critical buckling load of SWCNT reinforced concrete cylindrical shell embedded in an elastic foundation", Comput. Concrete., 26(1), 53-62. https://doi.org/10.12989/CAC.2020.26.1.053.   DOI
68 Tlidji, Y., Benferhat, R. and Tahar, H.D. (2021), "Study and analysis of the free vibration for FGM microbeam containing various distribution shape of porosity", Struct. Eng. Mech., 77(2), 217-229. https://doi.org/10.12989/SEM.2021.77.2.217.   DOI
69 Vinyas, M. (2020), "On frequency response of porous functionally graded magneto-electro-elastic circular and annular plates with different electro-magnetic conditions using HSDT", Compos. Struct., 240, 112044. https://doi.org/10.1016/j.compstruct.2020.112044.   DOI
70 Rahimi, A., Alibeigloo, A. and Safarpour, M. (2020), "Threedimensional static and free vibration analysis of graphene platelet-reinforced porous composite cylindrical shell", J. Vib. Control, 26(19-20), 1627-1645. https://doi.org/10.1177/1077546320902340.   DOI
71 Arshid, E. and Khorshidvand, A.R. (2018), "Free vibration analysis of saturated porous FG circular plates integrated with piezoelectric actuators via differential quadrature method", Thin-Wall. Struct., 125, 220-233. http://doi.org/10.1016/j.tws.2018.01.007.   DOI
72 Alabas, M.B. and Majid, W.I. (2020), "Thermal buckling analysis of laminated composite plates with general elastic boundary supports", J. Eng., 26(3), 1-17. https://doi.org/10.31026/j.eng.2020.03.01.   DOI
73 Ali, A.H. and Majeed. W.I. (2021), "Transient Analysis of Laminated composite Plate using New Higher Order Shear Deformation Theory", IOP Conf. Series: Materials Science and Engineering, 1094-012040. http://doi.org/10.1088/1757-899X/1094/1/012040.   DOI
74 Alnujaie, A., Akbas, S.D., Eltaher, M.A. and Assie, A.E. (2021b), "Damped forced vibration analysis of layered functionally graded thick beams with porosity", Smart Struct. Syst., 27(4), 669-689. http://dx.doi.org/10.12989/sss.2021.27.4.669.   DOI
75 Cong, P.H., Chien, T.M., Khoa, N.D. and Duc, N.D. (2018), "Nonlinear thermomechanical buckling and post-buckling response of porous FGM plates using Reddy's HSDT", Aerosp Sci. Technol., 77, 419-428. https://doi.org/10.1016/j.ast.2018.03.020.   DOI
76 Abed, Z.A.K. and Majeed, W.I. (2020), "Effect of boundary conditions on harmonic response of laminated plates", Compos. Mater. Eng., 2(2), 125-140. https://doi.org/10.12989/cme.2020.2.2.125.   DOI
77 Ahmed, R.A., Al-Maliki, A.F. and Faleh, N.M. (2020), "Dynamic characteristics of multi-phase crystalline porous shells with using strain gradient elasticity", Adv. Nano Res, 8(2), 157-167. https://doi.org/10.12989/anr.2020.8.2.157.   DOI
78 Carrera, E., Brischetto, S. and Robaldo, A. (2008), "Variable kinematic model for the analysis of functionally graded material plates", AIAA J., 46 (1), 194-203. https://doi.org/10.2514/1.32490.   DOI
79 Chucheepsakul, S. and Chinnaboon, B. (2002), "An alternative domain/boundary element technique for analyzing plates on two-parameter elastic foundations", Eng. Anal Boundary Elem., 26, 547-555. https://doi.org/10.1016/S0955-7997(02)00007-3.   DOI
80 Civalek, O. (2007), "Nonlinear analysis of thin rectangular plates on Winkler-Pasternak elastic foundations by DSCHDQ methods", Appl Math Model., 31(3), 606-624. https://doi.org/10.1016/j.apm.2005.11.023.   DOI
81 Majeed, W.I. and Ebtihal A.S. (2017), "Buckling Analysis of Angle Ply Plates Using New Displacement Function", IJRTESS.
82 Majeed, W. I. (2021), "Thermal buckling analysis of cross-ply plates based on new displacement field", Journal of Engineering Research, 9(3 B), 302-316. DOI: 10.36909/jer.v9i3B.8494.   DOI
83 Majeed, W.I. and Abed, Z.A.K. (2019), "Buckling and pre stressed dynamics analysis of laminated composite plate with different boundary conditions", Al-Khwarizmi Eng. J., 15(1), 46-55. https://doi.org/10.22153/kej.2019.07.002.   DOI
84 Majeed, W.I. and Tayeh, F.H. (2015), "Stability and dynamic analysis of laminated composite plates", J. Eng., 21(8), 139-159.   DOI
85 Majeed, W.I. and Ebtihal A.S. (2018), "Buckling and pre stressed vibration analysis of laminated plates using new shear deformation", IOP Conf. Series: Materials Science and Eng., 454, https://doi.org/10.1088/1757-899X/454/1/012006.   DOI
86 Mantari J.L., Soares, C.G. (2012b), "Bending analysis of thick exponentially graded plates using a new trigonometric higher order shear deformation theory", Compos. Struct. 94(6), 1991 -2000. https://doi.org/10.1016/j.compstruct.2012.01.005.   DOI
87 Mantari, J.L. and Soares, C.G. (2012a), "Generalized hybrid quasi-3D shear deformation theory for the static analysis of advanced composite plates", Compos. Struct. 94(8), 2561-2575. https://doi.org/10.1016/j.compstruct.2012.02.019.   DOI
88 Daouadji, T.H. and Hadji, L. (2015), "Analytical solution of nonlinear cylindrical bending for functionally graded plates", Geomech. Eng., 9(5), 631-644. https://doi.org/10.12989/GAE.2015.9.5.631.   DOI
89 Mantari, J.L. and Soares, C.G. (2013), "A novel higher-order shear deformation theory with stretching effect for functionally graded plates", Compos. Part B: Eng., 45, 268-281. DOI:10.1016/J.COMPOSITESB.2012.05.036.   DOI
90 Akbas, S.D. (2015), "Wave propagation of a functionally graded beam in thermal environments", Steel Compos. Struct., 19(6), 1421-1447. https://doi.org/10.12989/SCS.2015.19.6.1421.   DOI
91 Mehar, K. and Panda, S. K. (2019), "Multiscale modeling approach for thermal buckling analysis of nanocomposite curved structure", Adv. Nano Res., 7(3), 181-190. https://doi.org/10.12989/ANR.2019.7.3.181.   DOI
92 Hammed, M.B. and Majeed, W.I. (2019), "Free vibration analysis of laminated composite plates with general boundary elastic supports under initial thermal load", Al-Khwarizmi Eng. J., 15(4), 23-32. https://doi.org/10.22153/kej.2019.09.004.   DOI
93 Ebrahimi, F., Jafari, A. and Selvamani, R. (2020), "Thermal buckling analysis of magneto-electro-elastic porous FG beam in thermal environment", Adv. Nano Res., 8(1), 83-94. http://dx.doi.org/10.12989/anr.2020.8.1.083.   DOI
94 Fenjan, R.M., Ahmed, R.A. and Faleh, N.M. (2019), "Investigating dynamic stability of metal foam nanoplates under periodic in-plane loads via a three-unknown plate theory", Adv. Aircraft Spacecraft Sci., 6(4), 297-314. https://doi.org/10.12989/aas.2019.6.4.297.   DOI
95 Hadji, L. (2020), "Influence of the distribution shape of porosity on the bending of FGM beam using a new higher order shear deformation model", Smart Struct. Syst., 26(2), 253-262. https://doi.org/10.12989/sss.2020.26.2.253.   DOI
96 Ibrahim, W.M. and Ghani, R.A. (2017), "Free vibration analysis of laminated composite plates with general elastic boundary supports", J. Eng., 23(4), 100-124.   DOI
97 Kiani, Y. (2019), "NURBS-based thermal buckling analysis of graphene platelet reinforced composite laminated skew plates", J. Thermal Stresses, 1-19. https://doi.org/10.1080/01495739.2019.1673687.   DOI
98 Madeh, A.R. and Majeed, W.I. (2021), "Effect of boundary conditions on thermal buckling of laminated composite shallow shell", Mater. Today: Proceedings, 42, 2397-2404. https://doi.org/10.1016/j.matpr.2020.12.501.   DOI
99 Akbas, S.D. (2017), "Vibration and static analysis of functionally graded porous plates", J. Appl. Comput. Mech., 3(3), 199-207. HTTPS://DOI.ORG/10.22055/JACM.2017.21540.1107.   DOI
100 Akbas, S.D. (2021), "Dynamic analysis of axially functionally graded porous beams under a moving load", Steel Compos. Struct., 39(6), 811-821. https://doi.org/10.12989/SCS.2021.39.6.811.   DOI
101 Mirjavadi, S. S., Forsat, M., Nia, A.F., Badnava, S. and Hamouda, A.M.S. (2020), "Nonlocal strain gradient effects on forced vibrations of porous FG cylindrical nanoshells", Adv. Nano Res., 8(2), 149-156. http://dx.doi.org/10.12989/anr.2020.8.2.149.   DOI
102 Avcar, M., Mohammed, W.K.M. (2018), "Free vibration of functionally graded beams resting on Winkler-Pasternak foundation", Arab. J. Geosci., 11(10), 232. https://doi.org/10.1007/s12517-018-3579-2.   DOI
103 Behravan Rad, A. and Alibeigloo, A. (2013), "Semi-analytical solution for the static analysis of 2D functionally graded solid and annular circular plates resting on elastic foundation", Mech. Adv. Mater. Struct., 20(7), 515-528. DOI:10.1080/15376494.2011.634088.   DOI
104 Birman, V. and Byrd, L.W. (2007), "Modeling and analysis of functionally graded materials and structures", Appl. Mech. Rev., 60(5), 195-216. https://doi.org/10.1115/1.2777164.   DOI
105 Merzoug, M., Bourada, M., Sekkal, M., Ali Chaibdra, A., Belmokhtar, C., Benyoucef, S. and Benachour, A. (2020), "2D and quasi 3D computational models for thermoelastic bending of FG beams on variable elastic foundation: Effect of the micromechanical models", Geomech. Eng., 22(4), 361-374. https://doi.org/10.12989/gae.2020.22.4.361.   DOI
106 Mindlin, R.D. (1951), "Thickness-shear and flexural vibrations of crystal plates", J. Appl. Phys., 22(3), 316-323. https://doi.org/10.1063/1.1699948.   DOI
107 Mohammadimehr, M. and Meskini, M. (2020), "Analysis of porous micro sandwich plate: Free and forced vibration under magneto-electro-elastic loadings", Adv. Nano Res., 8(1), 69-82. http://dx.doi.org/10.12989/anr.2020.8.1.069.   DOI
108 Ozgan, K. and Daloglu, A.T. (2007), "Alternative plate finite elements for the analysis of thick plates on elastic foundations", Struct. Eng. Mech., 26(1), 69-86. https://doi.org/10.12989/SEM.2007.26.1.069.   DOI
109 Pabst, W. and Gregorova, E. (2014c), "Youngs modulus of isotropic porous materials with spheroidal pores", J. Eur. Ceram. Soc., 34, 3195-3207. https://doi.org/10.1016/j.jeurceramsoc.2014.04.009.   DOI
110 Madenci, E. (2019), "A refined functional and mixed formulation to static analyses of fgm beams", Struct. Eng. Mech., 69(4), 427-437. https://doi.org/10.12989/sem.2019.69.4.427.   DOI
111 Madenci, E., & Ozkilic, Y. O. (2021), "Cyclic response of selfcentering SRC walls with frame beams as boundary", Steel and Composite Structures, 40(2), 157-173. https://doi.org/10.12989/SCS.2021.40.2.157.   DOI