• Title/Summary/Keyword: bending moment effect

Search Result 372, Processing Time 0.036 seconds

Difference analysis of the collapse behaviors of the single-story beam-column assembly and multi-story planar frame

  • Zheng Tan;Wei-Hui Zhong;Bao Meng;Xing-You Yao;Yu-Hui Zheng;Yao Gao;Shi-Chao Duan
    • Steel and Composite Structures
    • /
    • v.50 no.3
    • /
    • pp.265-280
    • /
    • 2024
  • The collapse behavior observed in single-story beam-column assembly (SSBCA) do not accurately represent the actual overall stress characteristic of multi-story frame structure (MSFS) under column loss scenario owing to ignoring the interaction action among different stories, leading to a disconnection between the anti-collapse behaviors of "components" and "overall structures", that is, the anti-collapse performance of frame structures with two different structural scales has not yet formed a combined force. This paper conducts a numerical and theoretical study to explore the difference of the collapse behaviors of the SSBCA and MSFS, and further to reveal the internal force relationships and boundary constraints at beam ends of models SSBCA and MSFS. Based on the previous experimental tests, the corresponding refined numerical simulation models were established and verified, and comparative analysis on the resistant-collapse performance was carried out, based on the validated modeling methods with considering the actual boundary constraints, and the results illustrates that the collapse behaviors of the SSBCA and MSFS is not a simple multiple relationship. Through numerical simulation and theoretical analysis, the development laws of internal force in each story beam under different boundary constraints was clarified, and the coupling relationship between the bending moment at the most unfavorable section and axial force in the composite beam of different stories of multi story frames with weld cover-plated flange connections was obtained. In addition, considering the effect of the yield performance of adjacent columns on the anti-collapse bearing capacities of the SSBCA and MSFS during the large deformation stages, the calculation formula for the equivalent axial stiffness at the beam ends of each story were provided.

A Parametric Study on the Seismic Response Analysis of LNG Storage Tank with Disconnected Pile Foundation Subjected to Horizontal Seismic Input Considering Fluid-Structure-Soil Interaction (유체-구조물-지반 상호작용을 고려한 비결합 말뚝기초에 지지된 LNG 저장탱크의 수평지진입력에 대한 지진응답 매개변수해석)

  • Son, Il-Min;Kim, Jae-Min
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.1
    • /
    • pp.21-32
    • /
    • 2024
  • This study performed the seismic response analysis of an LNG storage tank supported by a disconnected piled raft foundation (DPRF) with a load transfer platform (LTP). For this purpose, a precise analytical model with simultaneous consideration of Fluid-Structure Interaction (FSI) and Soil-Structure Interaction (SSI) was used. The effect of the LTP characteristics (thickness, stiffness) of the DPRF system on the seismic response of the superstructure (inner and outer tanks) and piles was analyzed. The analytical results were compared with the response of the piled raft foundation (PRF) system. The following conclusions can be drawn from the numerical results: (1) The DPRF system has a smaller bending moment and axial force at the head of the pile than the PRF system, even if the thickness and stiffness of the LTP change; (2) The DPRF system has a slight stiffness of the LTP and the superstructure member force can increase with increasing thickness. This is because as the stiffness of the LTP decreases and the thickness increases, the natural frequency of the LTP becomes closer to the natural frequency of the superstructure, which may affect the response of the superstructure. Therefore, when applying the DPRF system, it is recommended that the sensitivity analysis of the seismic response to the thickness and stiffness of the LTP must be performed.

Effect of RBS on seismic performance of prefabricated steel-concrete composite joints

  • Zhen Zhu;Haitao Song;Mingchi Fan;Hao Yu;Chenglong Wu;Chunying Zheng;Haiyang Duan;Lei Wang
    • Steel and Composite Structures
    • /
    • v.52 no.4
    • /
    • pp.405-418
    • /
    • 2024
  • To study the influence of different reduced beam section (RBS) on the mechanical performance of modular boltedwelded hybrid connection joints (MHCJs), this article uses ABAQUS to establish and verify the finite element model (FEM) of the test specimens on the basis of quasi-static test research. Based on, 14 joint models featuring different RBS are devised to evaluate their influence on seismic behavior, such as joint failure mode, bending moment (M)-rotation angle (θ) curve, ductility, and energy consumption. The results indicate that when the flange and web are individually weakened, they alleviate to some extent the concentrated stress of the core module (CM) and column end steel skeleton in the joint core area, but both increase the stress on the flange connecting plate (FCP). At the same time, the impact of both on seismic performance such as bearing capacity, stiffness, and energy consumption is relatively small. When simultaneously weakening the flange and web of the steel beam, forming plastic hinges at the weakened position of the beam end, significantly alleviated the stress concentration of the CM and the damage at the FCP, improving the overall deformation and energy consumption capacity of joints. But as the weakening size of the web increases, the overall bearing capacity of the joint shows a decreasing trend.

Experimental investigation on flexural behaviour of HSS stud connected steel-concrete composite girders

  • Prakash, Amar;Anandavalli, N.;Madheswaran, C.K.;Lakshmanan, N.
    • Steel and Composite Structures
    • /
    • v.13 no.3
    • /
    • pp.239-258
    • /
    • 2012
  • In this paper, experimental investigations on high strength steel (HSS) stud connected steel-concrete composite (SCC) girders to understand the effect of shear connector density on their flexural behaviour is presented. SCC girder specimens were designed for three different shear capacities (100%, 85%, and 70%), by varying the number of stud connectors in the shear span. Three SCC girder specimens were tested under monotonic/quasi-static loading, while three similar girder specimens were subjected to non-reversal cyclic loading under simply supported end conditions. Details of casting the specimens, experimental set-up, and method of testing, instrumentation for the measurement of deflection, interface-slip and strain are discussed. It is found that SCC girder specimen designed for full shear capacity exhibits interface slip for loads beyond 25% of the ultimate load capacity. Specimens with lesser degree of shear connection show lower values of load at initiation of slip. Very good ductility is exhibited by all the HSS stud connected SCC girder specimens. It is observed that the ultimate moment of resistance as well as ductility gets reduced for HSS stud connected SCC girder with reduction in stud shear connector density. Efficiency factor indicating the effectiveness of high strength stud connectors in resisting interface forces is estimated to be 0.8 from the analysis. Failure mode is primarily flexure with fracturing of stud connectors and characterised by flexural cracking and crushing of concrete at top in the pure bending region. Local buckling in the top flange of steel beam was also observed at the loads near to failure, which is influenced by spacing of studs and top flange thickness of rolled steel section. One of the recommendations is that the ultimate load capacity can be limited to 1.5 times the plastic moment capacity of the section such that the post peak load reduction is kept within limits. Load-deflection behaviour for monotonic tests compared well with the envelope of load-deflection curves for cyclic tests. It is concluded from the experimental investigations that use of HSS studs will reduce their numbers for given loading, which is advantageous in case of long spans. Buckling of top flange of rolled section is observed at failure stage. Provision of lips in the top flange is suggested to avoid this buckling. This is possible in case of longer spans, where normally built-up sections are used.

Model for fiber Cross-Sectional Analysis of FRP Concrete Members Based on the Constitutive Law in Multi-Axial Stress States (다축응력상태의 구성관계에 기초한 FRP 콘크리트 부재의 층분할 단면해석모델)

  • 조창근;김영상;배수호;김환석
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.6
    • /
    • pp.892-899
    • /
    • 2002
  • Among the methods for enhancement of load-carrying capacity on flexural concrete member, recently, a concept is being investigated which replaces the steel in a conventional reinforced concrete member with a fiber reinforced polymer(FRP) shell. This study focuses on modeling of the structural behavior of concrete surrounded with FRP shells in flexural bending members. A numerical model of fiber cross-sectional analysis is proposed to predict the stress and deformation state of the FRP shell and concrete. The stress-strain relationship of concrete confined by a FRP shell is formulated to be based on the constitutive law of concrete in multi-axial compressive stress state, in assuming that the compression response is dependent on the radial expansion of the concrete. To describe the FRP shell behavior, equivalent orthotropic properties of in-plane behavior from classical lamination theory are used. The present model is validated to compare with the experiments of 4-point bending tests of FRP shell concrete beam, and has well predicted the moment-curvature relationships of the members, axial and hoop strains in the section, and the enhancement of confinement effect in concrete surrounded by FRP shell.

A Study on the Buckling Stability due to Lateral Impact of Gas Pipe Installed on the Sea-bed (해저면에 설치된 가스관의 외부충격에 의한 좌굴 안전성 검토)

  • Park, Joo-Shin;Yi, Myung-Su
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.2
    • /
    • pp.414-421
    • /
    • 2022
  • Subsea oil and gas exploration is increasingly moving into deeper water depths, and typically, subsea pipelines operate under high pressure and temperature conditions. Owing to the difference in these components, the axial force in the pipe is accumulated. When a pipeline is operated at a high internal pressure and temperature, it will attempt to expand and contract for differential temperature changes. Typically, the line is not free to move because of the plane strain constraints in the longitudinal direction and soil friction effects. For a positive differential temperature, it will be subjected to an axial compressive load, and when this load reaches a certain critical value, the pipe may experience vertical (upheaval buckling) or lateral (snaking buckling) movements that can jeopardize the structural integrity of the pipeline. In these circumstances, the pipeline behavior should be evaluated to ensure the pipeline structural integrity during operation in those demanding loading conditions. Performing this analysis, the correct mitigation measures for thermal buckling can be considered either by accepting bar buckling but preventing the development of excessive bending moment or by preventing any occurrence of bending.

The Reinforcing Effect of Blade Attached Pile to Support Submerged Breakwater (보강날개로 보강된 수중잠제 지지말뚝의 보강효과 분석)

  • Jeong, Sangseom;Hong, Moonhyun;Ko, Jun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.4
    • /
    • pp.863-874
    • /
    • 2015
  • The use of pile reinforcement is considered as one of the most promising techniques for improving load carrying capacity of piles in offshore area. In this study, to consider the horizontal and uplift bearing capacity of submerged breakwater bearing pile, exclusive analysis on load-transfer behaviour of pile was conducted. First of all, check the reinforcing effect from the three-dimensional finite element method, and estimate load transfer curve (ground reaction force). Based on these results, the reinforcing effect was quantified by estimating the coefficients of horizontal and uplift reinforcement of reinforced piles. Load transfer function with consideration of the reinforcing effect was proposed from estimated coefficients. A comparison of the analysis using the proposed load transfer function with three-dimensional finite element analysis has resulted that the proposed load transfer function is displaying good accuracy of predicting behavior of the load transfer between the pile and soil reinforcement. Interpretation of the submerged structure by applying a load transfer function considering the reinforcing effect, has shown that the reinforced pile's shear, bending moment and displacement are less than that of non-reinforced piles, while the subgrade reaction modulus arises greater. Thus, it is expected to be relatively cost effective in terms of design.

A Study on the Optimal Limit State Design of Reinforced Concrete Flat Slab-Column Structures (한계상태설계법(限界狀態設計法)에 의한 철근(鐵筋)콘크리트 플래트 슬라브형(型) 구조체(構造體)의 최적화(最適化)에 관한 연구(研究))

  • Park, Moon Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.4 no.1
    • /
    • pp.11-26
    • /
    • 1984
  • The aim of this study is to establish a synthetical optimal method that simultaneously analyze and design reinforced concrete flat slab-column structures involving multi-constraints and multi-design variables. The variables adopted in this mathematical models consist of design variables including sectional sizes and steel areas of frames, and analysis variable of the ratio of bending moment redistribution. The cost function is taken as the objective function in the formulation of optimal problems. A number of constraint equations, involving the ultimate limit state and the serviceability limit state, is derived in accordance with BSI CP110 requirements on the basis of limit state design theory. Both objective function and constraint equations derived from design variables and an analysis variable generally become high degree nonlinear problems. Using SLP as an analytical method of nonlinear optimal problems, an optimal algorithm is developed so as to analyze and design the structures considered in this study. The developed algorithm is directly applied to a few reinforced concrete flat slab-column structures to assure the validity of it and the possibility of optimization From the research it is found that the algorithm developed in this study is applicable to the optimization of reinforced concrete flat slab column structures and it converges to a optimal solution with 4 to 6 iterations regardless of initial variables. The result shows that an economical design can be possible when compared with conventional designs. It is also found that considering the ratio of bending moment redistribution as a variable is reasonable. It has a great effect on the composition of optimal sections and the economy of structures.

  • PDF

A Proposal for Improved Safety Assessment Procedure of Corrugated Steel Plate Structures Using Measured Displacements (파형강판 구조물의 내공변위를 활용한 개선된 안전도 평가 절차 제안)

  • Jeon, Se-Jin;Lee, Byeong-Ju
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.1
    • /
    • pp.13-24
    • /
    • 2020
  • A systematic approach to assess the safety of corrugated steel plate structures has not been established yet. Therefore, an improved safety assessment procedure was proposed in this study by considering the characteristics of corrugated steel plate structures in which the dead load of backfill soil is dominant and the live load effect is minimized. The proposed procedure can consider the combined effect of axial force and bending moment on the safety, based on the Soil-Culvert Interaction (SCI) method, and can differentiate the maintenance scheme according to the calculated plasticity index. There is also an advantage in enhancing the accuracy of assessment, utilizing the measured displacements. Furthermore, improved methods were proposed by discussing various ways for reasonably improving the proposed assessment procedure. The safety of an actual structure and a full-scale test specimen was assessed by applying the proposed procedure. The conventional assessment procedure significantly overestimated the load-carrying capacity, whereas the proposed procedure resulted in a reasonable level of safety. Therefore, the procedure proposed in this study is expected to contribute to the establishment of proper maintenance plan such as the quantitative condition assessment and strengthening of corrugated steel plate structure.

Effect of Bond Length and Web Anchorage on Flexural Strength in RC Beams Strengthened with CFRP Plate (부착길이와 복부정착이 CFRP판으로 보강된 RC 보의 휨 보강효과에 미치는 영향)

  • 박상렬
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.5
    • /
    • pp.645-652
    • /
    • 2002
  • This paper presents the flexural behavior and strengthening effect of reinforced concrete beams bonded with carbon FRP plate. Parameters involved in this experimental study were plate bond length and sheet web anchorage length. Test beams were strengthened with FRP plate on the soffit and anchored with FRP sheet on the web. In general, strengthened beams with no web anchorage were failed by concrete cover failure along the longitudinal reinforcement. On the other hand, strengthened beams with web anchorage were finally failed by delamination shear failure within concrete after breaking of CFRP sheet wrapping around web. The ultimate load and deflection of strengthened beams increased with an increased bond length of FRP plate. Also, the ultimate load and deflection increased with an increased anchorage length of FRP sheet. Particularly, the strengthened beams with web anchorage maintained high ultimate load resisting capacity until very large deflection. The shape of strain distribution of CFRP plate along beam was very similar to that of bending moment diagram. Therefore, an assumption of constant shear stress in shear span could be possible in the analysis of delamination shear stress of concrete. In the case of full bond length, the ultimate resisting shear stress provided by concrete and FRP sheet Increased with an increase of web anchorage length. In the resisting shear force, a portion of the shear force was provided by FRP anchorage sheet.