DOI QR코드

DOI QR Code

The Reinforcing Effect of Blade Attached Pile to Support Submerged Breakwater

보강날개로 보강된 수중잠제 지지말뚝의 보강효과 분석

  • 정상섬 (연세대학교 토목환경공학과) ;
  • 홍문현 (연세대학교 토목환경공학과) ;
  • 고준영 (연세대학교 토목환경공학과)
  • Received : 2015.04.18
  • Accepted : 2015.07.02
  • Published : 2015.08.01

Abstract

The use of pile reinforcement is considered as one of the most promising techniques for improving load carrying capacity of piles in offshore area. In this study, to consider the horizontal and uplift bearing capacity of submerged breakwater bearing pile, exclusive analysis on load-transfer behaviour of pile was conducted. First of all, check the reinforcing effect from the three-dimensional finite element method, and estimate load transfer curve (ground reaction force). Based on these results, the reinforcing effect was quantified by estimating the coefficients of horizontal and uplift reinforcement of reinforced piles. Load transfer function with consideration of the reinforcing effect was proposed from estimated coefficients. A comparison of the analysis using the proposed load transfer function with three-dimensional finite element analysis has resulted that the proposed load transfer function is displaying good accuracy of predicting behavior of the load transfer between the pile and soil reinforcement. Interpretation of the submerged structure by applying a load transfer function considering the reinforcing effect, has shown that the reinforced pile's shear, bending moment and displacement are less than that of non-reinforced piles, while the subgrade reaction modulus arises greater. Thus, it is expected to be relatively cost effective in terms of design.

본 연구에서는 보강날개로 보강된 수중잠제 지지말뚝의 보강효과를 분석하기 위하여 하중전이거동을 분석하였다. 먼저 3차원 유한요소해석을 통해 말뚝의 변위 및 하중전이곡선(지반반력) 결과로부터 보강효과를 확인하고, 하중전이곡선에서 극한저항력 비율로 보강말뚝의 수평 및 인발하중에 대한 보강계수를 산정함으로써 보강효과를 정량화 하였다. 산정된 보강계수를 쌍곡선 하중전이함수의 극한저항력 $p_u$$t_{max}$에 곱해서 보정상수(fitting parameter)로 적용하여 보강효과를 고려한 하중전이함수를 제안하였다. 제안된 하중전이함수가 수치해석 결과를 잘 반영하고 있는지 확인하기 위해 3차원 유한요소해석을 비교하여 보강말뚝의 하중전이거동을 분석하였다. 제안된 하중전이함수를 하중전이법 해석에 적용하여, 실제 수중잠제를 해석한 결과 보강말뚝의 전단력, 휨 모멘트, 변위가 무보강말뚝보다 작게 발생하고, 지반반력은 더 크게 발생하여 비교적 경제적인 설계가 가능할 것으로 판단된다.

Keywords

References

  1. Braja, M. Das. (2008). Principle of Foundation Engineering, Boston, Massachusetts (in USA).
  2. Brinch Hansen, J. (1961). "The ultimate resistance of rigid pilesagainst transversal forces." Bulletin No. 12, Danish Geotechnical Institute, Copenhagen, pp. 5-9 (in Denmark).
  3. Broms, B. (1964). "Lateral resistance of piles in cohesive soils." Journal of Geotechnical and Geoenvironment Engineering, ASCE, Vol. 90, No. 4, pp. 27-63.
  4. Brown, D. A. and Shie, C. F. (1991). "Some numerical experiments with a three-dimensional finite element model of laterally loaded piles." Computers and Geotechnics, Vol. 12, pp. 149-162. https://doi.org/10.1016/0266-352X(91)90004-Y
  5. Castelli, F., Maugeri, M. and Motta, E. (1992). "Analisi non lineare del cedimento di un Palo Singolo." Rivista Italiana di Geotechnica, Vol. 26, No. 2, pp. 115-135.
  6. Coyle, H. M. and Reese, L. C. (1966). "Load transfer for axially loaded piles in clay." Journal Soil Mech. and Found. Div, ASCE, Vol. 92, No. 2, pp. 1-26.
  7. Goh, A. T., The, C. I. and Wong, K. S. (1997). "Analysis of piles subjected to embankment induced lateral soil movement." Journal of Geotechnical and Geoenvironment Engineering, ASCE, Vol. 123, No. 9, pp. 792-801. https://doi.org/10.1061/(ASCE)1090-0241(1997)123:9(792)
  8. Hiroi, I. (1920). "The force and power of waves." Engineering, Aug. pp. 184-185.
  9. Jeong, S. and Cho, J. (2014). "Proposed nonlinear 3-D analytical method for piled raft foundations." Computers and Geotechnics, Vol. 59, No. 6, pp. 112-126. https://doi.org/10.1016/j.compgeo.2014.02.009
  10. Jeong, S. and Seo, D. (2004). "Analysis of tieback walls using proposed p-y curves for coupled soil springs." Computers and Geotechnics, Vol. 31, pp. 443-456. https://doi.org/10.1016/j.compgeo.2004.05.003
  11. Jeong, S., Ham, H. and Lee, D. (2004). "Load transfer analysis of drilled shafts reinforced by soil nails." Journal of the Korean Geotechnical Society, Vol. 20, No. 1, pp. 37-47 (in Korean).
  12. Jeremic, B. and Yang, Z. (2002). "Numerical analysis of pile behavior under lateral loads in layered elastic-plastic soils." International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 26, pp. 1385-1406. https://doi.org/10.1002/nag.250
  13. Joseph, E. B. (1996). Foundation analysis and Design, McGraw Hill, New York, N.Y.
  14. Kempfert, H. G., Gobel, C., Alexiew, D. and Heitz, C. (2004). "German recommendations for reinforced embankments on pilesimilar elements." EuroGeo3-Third European Geosynthetics Conference, Geotechnical Engineering with Geosynthetics, pp. 279-284.
  15. Kim, H., Won, M. and Jamin, J. (2014). "Finite-element analysis on the stability of geotextile tube-reinforced embankments under scouring." Int. Journal Geomech, 10.1061/(ASCE)GM.1943-5622.0000420,06014019.
  16. Kim, J., Hwang, T. and Jeong, S. (2011). "Simplified analysis of pile bent structures and minimum reinforcement ratio." Journal of Korean Geotechnical Society, Korean Geotechnical Society, Vol. 27, No. 5, pp. 33-43. https://doi.org/10.7843/kgs.2011.27.5.033
  17. Kim, J., Jeong, S. and Ahn, S. (2013). "Propsed optimized columnpile diameter ratio with varying cross-section for bent pile structures." Journal of the Korean Geotechnical Society, Vol. 33, No. 5, pp. 1935-1946 (in Korean).
  18. Kim, J., Jeong, S. and Kim, J. J. (2014). "Analysis of steel reinforcement ratio for bent pile structures considering column-pile interaction." Journal of the Korean Geotechnical Society, Vol. 26, No. 5, pp. 181-188 (in Korean).
  19. Kim, Y. and Jeong, S. (2011). "Analysis of soil resistance on laterally loaded piles based on 3D soil-pile interaction." Computers and Geotechnics, Vol. 38, No. 2, pp. 248-257. https://doi.org/10.1016/j.compgeo.2010.12.001
  20. Korea Meteorological Administration (2012). The Korea Climate Change Outlook Report (in Korean).
  21. Matlock, H. (1970). "Correlation for design of laterally loaded piles in soft clay." The second annual offshore technology conference, Houston, TX, pp. 577-607.
  22. O'Neill, M. W. and Gazioglu, S. M. (1984). "Evaluation of p-y relationships in cohesive soils." Proceedings of a Analysis and Design of Pile Foundations, ASCE Geotechnical Engineering Division, pp. 192-213.
  23. Prasad, Y. V. and Rao, S. N. (1996). "Lateral capacity of helical piles in clays." Journal of geotechnical engineering, Vol. 122, No. 11, pp. 938-941. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:11(938)
  24. Reese, L. C. and Wright, W. (1977). Drilled shaft manual, U. S. Department of Transportation.
  25. Sim, J., Kim, S., Jeon, I., Park, G. and Kim, J. (2011). "Construction and the device an increase in the pile bearing." Patent registration number 10-1091585 (in Korean).
  26. Ulker, M. (2012). "Pore Pressure, Stress Distributions, and Instantaneous Liquefaction of Two- Layer Soil under Waves." J. Waterway, Port, Coastal, Ocean Eng., Vol. 138, No. 6, pp. 435-450. https://doi.org/10.1061/(ASCE)WW.1943-5460.0000155
  27. Verhaeghe, H., De Vos, L., Boone, E. and Goemaere, J. (2014). "Using field data to improve the settlement prediction model of a breakwater on soft soil." Journal Waterway, Port, Coastal, Ocean Eng., Vol. 140, No. 2, pp. 173-187. https://doi.org/10.1061/(ASCE)WW.1943-5460.0000213