DOI QR코드

DOI QR Code

Difference analysis of the collapse behaviors of the single-story beam-column assembly and multi-story planar frame

  • Zheng Tan (School of Civil Engineering, Xi'an University of Architecture and Technology) ;
  • Wei-Hui Zhong (School of Civil Engineering, Xi'an University of Architecture and Technology) ;
  • Bao Meng (School of Civil Engineering, Xi'an University of Architecture and Technology) ;
  • Xing-You Yao (Jiangxi Province Key Laboratory of Hydraulic and Civil Engineering Infrastructure Security, Nanchang Institute of Technology) ;
  • Yu-Hui Zheng (School of Civil Engineering, Xi'an University of Architecture and Technology) ;
  • Yao Gao (School of Civil Engineering, Xi'an University of Architecture and Technology) ;
  • Shi-Chao Duan (School of Civil Engineering, Xi'an University of Architecture and Technology)
  • Received : 2023.08.21
  • Accepted : 2023.11.23
  • Published : 2024.02.10

Abstract

The collapse behavior observed in single-story beam-column assembly (SSBCA) do not accurately represent the actual overall stress characteristic of multi-story frame structure (MSFS) under column loss scenario owing to ignoring the interaction action among different stories, leading to a disconnection between the anti-collapse behaviors of "components" and "overall structures", that is, the anti-collapse performance of frame structures with two different structural scales has not yet formed a combined force. This paper conducts a numerical and theoretical study to explore the difference of the collapse behaviors of the SSBCA and MSFS, and further to reveal the internal force relationships and boundary constraints at beam ends of models SSBCA and MSFS. Based on the previous experimental tests, the corresponding refined numerical simulation models were established and verified, and comparative analysis on the resistant-collapse performance was carried out, based on the validated modeling methods with considering the actual boundary constraints, and the results illustrates that the collapse behaviors of the SSBCA and MSFS is not a simple multiple relationship. Through numerical simulation and theoretical analysis, the development laws of internal force in each story beam under different boundary constraints was clarified, and the coupling relationship between the bending moment at the most unfavorable section and axial force in the composite beam of different stories of multi story frames with weld cover-plated flange connections was obtained. In addition, considering the effect of the yield performance of adjacent columns on the anti-collapse bearing capacities of the SSBCA and MSFS during the large deformation stages, the calculation formula for the equivalent axial stiffness at the beam ends of each story were provided.

Keywords

Acknowledgement

The research presented in this paper is supported by the National Natural Science Foundation of China (Nos. 52178162, 51908449). The authors also gratefully acknowledge the financial support supplied by the scientific research plan projects of Shaanxi Education Department (Nos. 20JY033, 20JK0713).

References

  1. Abaqus 6.14 (2014), Analysis User's Manual. Dassault Systemes Simulia Corp., USA.
  2. Alashker, Y. and El-Tawil, S. (2010), "A design-oriented model for the collapse resistance of composite floors subjected to column loss", J. Constr. Steel Res., 67, 84-92. https://doi.org/10.1016/j.jcsr.2010.07.008.
  3. Alrubaidi, M., Elsanadedy, H., Abbas, H., Almusallam, T. and Al- Salloum. Y. (2020), "Investigation of different steel intermediate moment frame connections under column-loss scenario", Thin- Wall. Struct., 154, 106875. https://doi.org/10.1016/j.tws.2020.106875.
  4. ASCE/SEI 41-17 (American Society of Civil Engineers) (2017), Seismic evaluation and retrofit of existing buildings, Reston, USA.
  5. Chen, C.H., Zhu, Y.F., Yao, Y. Huang, Y. and Long, Y. X. (2016), "An evaluation method to predict progressive collapse resistance of steel frame structures", J. Constr. Steel. Res., 122, 238-250. https://doi.org/10.1016/j.jcsr.2016.03.024.
  6. Diao, M.Z., Li, Y., Guan, H., Lu, X.Z. and Gilbert, B.P. (2020), "Influence of horizontal restraints on the behaviour of vertical disproportionate collapse of RC moment frames", Eng. Fail. Anal., 109, 104324. https://doi.org/10.1016/j.engfailanal.2019.104324.
  7. Dinu, F., Marginean, I. and Dubina, D. (2017), "Experimental testing and numerical modelling of steel moment-frame connections under column loss", Eng. Struct., 151, 861-878. https://doi.org/10.1016/j.engstruct.2017.08.068.
  8. DoD (2016), Design of Buildings to Resist Progressive Collapse. Unified facilities criteria, Washington D C, USA.
  9. EI-Tawil, S., Li, H.H. and Kunnath, S. (2014), "Computational simulation of gravity-induced progressive collapse of steelframe buildings: current trends and future research needs", J. Struct. Eng., 140, A2513001. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000897.
  10. FEMA-350 (2000), Recommended Seismic Criteria for New Steel Moment Frame Building, Federal Emergency Management Agency, Washington DC, USA.
  11. Forquin, P. and Chen, W. (2017), "An experimental investigation of the progressive collapse resistance of beam-column RC subassemblages", Constr. Build. Mater., 152, 1068-1084. https://doi.org/10.1016/j.conbuildmat.2017.05.179.
  12. GB 50010-2010 (2010), Code for Design of Concrete Structures, Ministry of Housing and Urban-Rural Development, Beijing, China.
  13. GB 50017-2017 (2017), Standard for Design of Steel Structures. China Architecture & Building Press, Beijing, China.
  14. GSA (2013), Alternate Path Analysis and Design Guidelines for Progressive Collapse Resistance, Office of Chief Architects, Washington, DC.
  15. Harry, O.A. and Lu, Y. (2019), "Simplified theoretical model for prediction of catenary action incorporating strength degradation in axially restrained beams", Eng. Struct., 191, 219-228. https://doi.org/10.1016/j.engstruct.2019.04.043.
  16. Izzuddin, B.A. and Sio, J. (2022), "Rational horizontal tying force method for practical robustness design of building structures", Eng. Struct., 252, 113676. https://doi.org/10.1016/j.engstruct.2021.113676.
  17. Kang, S.B., Tan, K.H., Liu, H.Y., Zhou, X.H. and Yang, B. (2017), "Effect of boundary conditions on the behaviour of composite frames against progressive collapse", J. Constr. Steel. Res., 138, 150-167. https://doi.org/10.1016/j.jcsr.2017.07.005.
  18. Khaloo. A. and Omidi. H. (2018), "Evaluation of vierendeel peripheral frame as supporting structural element for prevention of progressive collapse", Steel Compos. Struct., 26(5), 549-556. https://doi.org/10.12989/scs.2018.26.5.549.
  19. Kim, T. and Kim, J. (2009), "Collapse analysis of steel moment frames with various seismic connections", J. Constr. Steel. Res., 65(6), 1316-1322. https://doi.org/10.1016/j.jcsr.2008.11.006.
  20. Kokot, S., Anthoine, A., Negro, P. and G. Solomos. (2012), "Static and dynamic analysis of a reinforced concrete flat slab frame building for progressive collapse", Eng. Struct., 40, 205-217. https://doi.org/10.1016/j.engstruct.2012.02.026.
  21. Kong, D.Y., Yang Y., Li, S., Yang, B. and Liew, J.Y.R. (2022), "Experimental and analytical study on progressive collapse of 3D composite floor system under corner column loss", J. Struct. Eng., 148(4), 04022012. https://doi.org/10.1061/(ASCE)ST.1943-541X.0003288.
  22. Lim, N.S., Tan, K.H. and Lee, C.K. (2017), "Effects of rotational capacity and horizontal restraint on development of CA in 2-D RC frames", Eng. Struct., 153, 613-627. https://doi.org/10.1016/j.engstruct.2017.09.059.
  23. Lin, K.Q., Chen, Z.F., Li, Y. and Lu, X.Z. (2022) "Uncertainty analysis on progressive collapse of RC frame structures under dynamic column removal scenarios", J. Build. Eng., 46, 103811. https://doi.org/10.1016/j.jobe.2021.103811.
  24. Liu, C., Tan, K.H. and Fung, T.C. (2015), "Component-based steel beam-column connections modelling for dynamic progressive collapse analysis", J. Constr. Steel. Res., 107, 24-36. https://doi.org/10.1016/j.jcsr.2015.01.001.
  25. Long, H.V. and Hung, N.D. (2008), "Second-order plastic-hinge analysis of 3-D steel frames including strain hardening effects", Eng. Struct., 30, 3505-3512. https://doi.org/10.1016/j.engstruct.2008.05.013.
  26. Lu, X.Z., Zhang, L., Lin, K.Q. and Li, Y. (2019), "Improvement to composite frame systems for seismic and progressive collapse resistance", Eng. Struct. 186, 227-242. https://doi.org/10.1016/j.engstruct.2019.02.006.
  27. Meng, B., Xiong, Yunpeng, Zhong, W.H., Duan, S.C. and Li, H. (2023), "Progressive collapse behaviour of composite substructure with large rectangular beam-web openings", Eng. Struct., 295, 116861. https://doi.org/10.1016/j.engstruct.2023.116861.
  28. Mirtaheri, M. and Abbasi, Z.M. (2016), "Design guides to resist progressive collapse for steel structures", Steel Compos. Struct., 20(2), 357-378. https://doi.org/10.12989/scs.2016.20.2.357.
  29. Qian, K. and Li, B. (2017), "Dynamic and residual behavior of reinforced concrete floors following instantaneous removal of a column", Eng. Struct., 148, 175-184. https://doi.org/10.1016/j.engstruct.2017.06.059.
  30. Qian, K., Lan, X., Li, Z., Li, Y. and Fu, F. (2020), "Progressive collapse resistance of two-storey seismic configured steel subframes using welded connections", J. Constr. Steel. Res., 170, 106117. https://doi.org/10.1016/j.jcsr.2020.106117.
  31. Qiu, L., Lin, F. and Wu, K.C. (2020), "Improving progressive collapse resistance of RC beam-column subassemblages using external steel cables", J. Perform. Constr. Facil., 34(1), 04019079. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001360.
  32. Ravasini, S., Sio, J., Franceschini, L., Izzuddina, B.A. and Belletti, B. (2021), "Validation of simplified tying force method for robustness assessment of RC framed structures", Eng. Struct., 249, 113291. https://doi.org/10.1016/j.engstruct.2021.113291.
  33. Sasani, M. and Sagiroglu, S. (2010), "Gravity load redistribution and progressive collapse resistance of a 20-story reinforced concrete structure following loss of an interior column", ACI. Struct. J., 107(6), 636-644. https://doi.org/10.1016/j.oceaneng.2010.06.006.
  34. Song, B.I. and Sezen, H. (2013), "Experimental and analytical progressive collapse assessment of a steel frame building", Eng. Struct., 56, 664-672. https://doi.org/10.1016/j.engstruct.2013.05.050.
  35. Stylianidis, P.M., Nethercot, D.A., Izzuddin, B.A. and Elghazouli, A.Y. (2016) "Study of the mechanics of progressive collapse with simplified beam models", Eng. Struct., 117(15), 287-304. https://doi.org/10.1016/j.engstruct.2016.02.056.
  36. Tan, Z., Zhong, W.H., Meng, B., Duan, S.C., Wang, H.C., Yao, X.Y. and Zheng, Y.H. (2023a), "A novel design method for improving collapse resistances of multi-story steel frames with unequal spans using steel braces", Steel Compos. Struct., 47(2), 253-267. https://doi.org/10.12989/scs.2023.47.2.253.
  37. Tan, Z., Zhong, W.H., Meng, B., Zheng, Y.H. and Duan, S.C. (2022), "Effect of various boundary constraints on the collapse behavior of multi-story composite frames", J. Build. Eng., 52, 104412. https://doi.org/10.1016/j.jobe.2022.104412.
  38. Tan, Z., Zhong, W.H., Meng, B., Zheng, Y.H., Duan, S.C. and Gao, Y. (2023b), "Experimental investigation of boundary constraints on multi-story composite frames under internal element removal scenarios", J. Struct. Eng., Under Review.
  39. Tan, Z., Zhong, W.H., Tian, L.M., Meng, B., Song, X.Y. and Qiu, S.Z. (2020), "Research on the collapse-resistant performance of composite beam-column substructures using multi-scale models", Struct., 27, 86-101. https://doi.org/10.1016/j.istruc.2020.05.034.
  40. Tan, Z., Zhong, W.H., Tian, L.M., Meng, B., Zheng, Y.H., Song, X.Y. and Duan, S.C. (2021a), "Quantitative assessment of resistant contributions of two-bay beams with unequal spans", Eng. Struct., 242, 112445. https://doi.org/10.1016/j.engstruct.2021.112445.
  41. Tan, Z., Zhong, W.H., Tian, L.M., Zheng, Y.H., Meng, B. and Duan, S.C. (2021b), "Numerical study on collapse-resistant performance of multi-story composite frames under a column removal scenario", J. Build. Eng., 44, 102957. https://doi.org/10.1016/j.jobe.2021.102957.
  42. Wang, J.X., Shen, Y.J., Gao, S. and Wang, W.D. (2022) "Anticollapse performance of concrete-filled steel tubular composite frame with assembled tensile steel brace under middle column removal", Eng. Struct., 266, 114635. https://doi.org/10.1016/j.engstruct.2022.114635.
  43. Wang, J.X., Sun, Y.H., Gao, S. and Wang, W.D. (2023) "Anticollapse mechanism and reinforcement methods of composite frame with CFST columns and infill walls", J. Constr. Steel. Res., 208, 108022. https://doi.org/10.1016/j.jcsr.2023.108022.
  44. Wang, S.N., Cheng, X.W., Li, Y., Song, X.Y., Guo, R.J., Zhang, H.Y. and Liang, Z.H. (2023) "Rapid visual simulation of the progressive collapse of regular reinforced concrete frame structures based on machine learning and physics engine", Eng. Struct., 286, 116129. https://doi.org/10.1016/j.engstruct.2023.116129.
  45. Wang, W., Fang, C., Qin, X., Chen, Y.Y. and Li, L. (2016), "Performance of practical beam-to-SHS column connections against progressive collapse", Eng. Struct., 106, 332-347. https://doi.org/10.1016/j.engstruct.2015.10.040.
  46. Wei, J.P., Tian, L.M. and Hao, J.P. (2019), "Novel principle for improving performance of steel frame structures in column-loss scenario", J. Constr. Steel. Res., 163, 105768. https://doi.org/10.1016/j.jcsr.2019.105768.
  47. Yang, B., Kang, S.B., Tan, K.H. and Zhou, X.H. (2022) Behaviour of building structures subjected to progressive collapse. Elsevier.
  48. Yin, Y.Z. and Wang, Y.C. (2005), "Analysis of catenary action in steel beams using a simplified hand calculation method, Part 1: theory and validation for uniform temperature distribution", J. Constr. Steel. Res., 61(2), 183-211. https://doi.org/10.1016/j.jcsr.2004.07.002.
  49. Yu, H.L. and Jeong, D.Y. (2010), "Application of a stress triaxiality dependent fracture criterion in the finite element analysis of unnotched Charpy specimens", Theor. Appl. Fract. Mech., 54(1), 54-62. https://doi.org/10.1016/j.tafmec.2010.06.015.
  50. Zhang, J.Z., Li, G.Q., Feng, R. and Chen, R. (2021), "A simplified approach for collapse assessment of multi-storey steel framedstructures with one column loss", J. Constr. Steel. Res., 176, 106391. https://doi.org/10.1016/j.jcsr.2020.106391.
  51. Zhang, J.Z., Li, G.Q., Sun, Y.Z., Sun, J., Yu, Z.W. and Feng, R. (2023) "Maximum displacement prediction of composite floor system under falling impact", Eng. Struct., 275, 115326. https://doi.org/10.1016/j.engstruct.2022.115326.
  52. Zheng, L. and Wang, W.D. (2022), "Multi-scale numerical simulation analysis of CFST column-composite beam frame under a column-loss scenario", J. Constr. Steel. Res., 190, 107151. https://doi.org/10.1016/j.jcsr.2022.107151.
  53. Zhong, W.H., Tan, Z., Tian, L.M., Meng, B., Song, X.Y. and Zheng, Y.H. (2020), "Collapse resistance of composite beamcolumn assemblies with unequal spans under an internal column-removal scenario", Eng. Struct., 206, 110143. https://doi.org/10.1016/j.engstruct.2019.110143.
  54. Zhong, W.H., Tan, Z., Tian, L.M., Meng, B., Zheng, Y.H. and Duan, S.C. (2021), "Collapse-resistant performance of a singlestory frame assembly and multi-story sub-frame under an internal column-removal scenario", Steel Compos. Struct., 41(5), 663-679. https://doi.org/10.12989/scs.2021.41.5.663.