• 제목/요약/키워드: bending characteristics

검색결과 1,430건 처리시간 0.027초

Bi-2223 초전도테이프 임계전류의 굽힘하에서 인장변형률 특성 (Effect of tensile strain on $I_{c}$ degradation characteristics in Bi-2223 superconducting tapes under bending)

  • 신형섭;오상수;하동우
    • 한국초전도저온공학회:학술대회논문집
    • /
    • 한국초전도저온공학회 2003년도 추계학술대회 논문집
    • /
    • pp.134-138
    • /
    • 2003
  • The influences of mixed mode of bending-tension on the Ic degradation and their interaction on the strain effect were evaluated in this study. A test fixture which applies a mixed deformation mode of bending-tension to HTS tapes has been newly devised. When the strain induced in the tape due to the mixed deformation mode was expressed as a total tensile strain, the irreversible strain to the critical current degradation of Bi-2223 tapes increased when compared with the case of simple bending mode, and the value at both ends were larger than that at the central region of the bend part. The Ic degradation behavior at the region exceeding the irreversible strain showed quiet a rapid drop of the Ic when compared with the simple bending cases. As the applied bending strain increased namely as the diameter of mandrel adopted decreased, the apparent irreversible strain of Bi-2223 tapes increased However, the increment decreased as the mandrel diameter decreased. As a result, it could be found that the tension to be applied to the Bi-2223 tapes during cabling of HTS tapes should be smaller, as the mandrel diameter becomes smaller.

  • PDF

표면 효과를 고려한 극박 SS304 스테인리스 강판의 굽힘 거동 분석 (Analysis of Bending Behavior of Ultra-thin SS304 Stainless Steel Sheets Considering the Surface Effect)

  • 정재봉;채준열;정양진;김지훈
    • 소성∙가공
    • /
    • 제29권6호
    • /
    • pp.323-330
    • /
    • 2020
  • The surface region of a sheet metal may have different characteristics from the inner region because the surface region is less restricted than the interior. In addition, the grains on the free surface are less hardened because of surface adsorption of the dislocations, rather than piling up. In the case of bulk or thick sheet metals, this effect is negligible because the fraction of the surface region is much smaller than that of the inner region. However, this surface effect is important in the case of ultra-thin sheet metals. In order to evaluate the surface effect, tensile and bending tests were performed for the SS304 stainless steel with a thickness of 0.39 mm. The bending force predicted using the tensile behavior is higher than the measurement because of the surface effect. To account for the surface effect, the surface layer model was developed by dividing the sheet section into surface and inner layers. The mechanical behaviors of the two regions were calibrated using the tensile and bending properties. The surface layer model reproduced the bending behavior of the ultra-thin sheet metal.

볼트 유격을 고려한 단층 그리드 노드 접합 시스템의 휨 강성에 대한 구조 해석적 평가 (Numerical Evaluation on Bending Stiffness of Nodal Connection Systems in the Single Layered Grid Considering Bolt Clearance)

  • 황경주
    • 한국공간구조학회논문집
    • /
    • 제20권4호
    • /
    • pp.141-147
    • /
    • 2020
  • Single-layered grid space steel roof structure is an architectural system in which the structural ability of the nodal connection system greatly influences the stability of the entire structure. Many bolt connection systems have been suggested to enhance for better construct ability, but the structural behavior and maximum resistance of the connection system according to the size of bolt clearance play were difficult to identify. In particular, the identification of bending stiffness of the connection system is very important due to the characteristics of shell structures in which membrane stresses based on bending force effect significantly. To identify effective structural behavior and maximum bearing force, four representative nodal connection systems were selected and nonlinear numerical analysis were performed. The numerical analysis considering the size of the bolt clearance were performed to investigate structural behavior and maximum values of the bending force. In addition, the type of effective nodal connection system were evaluated. As a result, the connection system, which has two shear plane, represented high bending stiffness.

판재 특성에 따른 롤 성형 해석시 스프링백 연구 (A Study on the Springback of Sheet Characteristics for Roll forming Analsys)

  • 정진호;이영선;권용남;이정환;손성만;이문용
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 추계학술대회 논문집
    • /
    • pp.300-301
    • /
    • 2007
  • In this study, it is investigated that sheet characteristics of high strength steel sheets and effect of springback. High strength steel sheets has got attention in automobile industry of high strength and high formability. Springback is a common phenomenon in sheet metal forming, caused by the elastic recovery of the internal stresses after removal of the tooling. However, the information in deformation behavior of high strength steel sheets, including bending and sheet characteristics and springback, is not enough until now. In this research, the V-bending experiment and analysis have been done to obtain the information of springback of high strength steel sheets. Tensile test for high strength steel sheets was done to got tensile properties of elastic modulus and flow stress of the material. It analyzed springback according to the sheet characteristics with using roll-forming model. FE-Simulation used DEFORM-$3D^{TM}$.

  • PDF

굽힘하중에 대한 퇴행성 추간판의 생체역학적 특성 분석 (Biomechanical Behaviors of Disc Degeneration on Bending Loads)

  • 이현옥;이성재;신정욱
    • The Journal of Korean Physical Therapy
    • /
    • 제13권1호
    • /
    • pp.1-18
    • /
    • 2001
  • Aging has been recognized as the primary cause of disc degeneration. A biomechanical characteristics of disc degeneration has been demonstrated that intradiscal pressure is reduced. With the increasing population of elderly people, disc degeneration and associated problems of nerve entrapment are becoming more prevalent. Presently, research on reduced intradiscal pressure associated with degeneration is insufficient. In this study. we used the Finite Element Method (FEM) of computerized simulations to investigate the effects of variation in intradiscal pressure on mechanical behaviours of L4-5 intervertebral disc degeneration. Degeneration was classified using four grades based on initial intradiscal pressure; Normal (135 kPa), mild(107 kPa), moderate (47 kPa) and severe (15 kPa). The predicted results f3r bending loads were as follows; 1 . Range of motion increased progressively with severity of degeneration with flexion and lateral bending moments, but decreased with extension moments. 2. Discal bulging of posterolateral aspect was larger in lateral bending and extension moment. But bulging was increased with severity of degeneration in lateral bending and torsion(same side).3. The rate of increasing intradiscal pressure was decreased in all bending motions with severity of degeneration. In conclusion, lateral bending and extension moment yield greatest bulging in severe degeneration. In torsion, although bending load produces disc bulging, disc bulging was associated more strongly with severity of degeneration than increasing torsional moments. Clinical Implications: Discal bulging may produce nerve root impingement and irritation. The effect of loading and posture on the varying degrees of disc degeneration has important implications especially in the elderly. In the presence of disc degeneration, avoidance of end range postures, especially extension and lateral bending may help reduce discal bulging and in turn, nerve entrapment.

  • PDF

박판의 온간 2차원 드로오 벤딩에서의 스프링백 (Springback for the Warm 2D Draw-bending of Steel Sheets)

  • 이상무;장성호;최이천;허영무;서대교
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2001년도 추계학술대회 논문집
    • /
    • pp.75-80
    • /
    • 2001
  • The purpose of this study is to investigate the characteristics of springback for various process conditions of the 2D draw-bending operation. The process variables are the forming temperature, the geometry of tools such as punch profile radius(Rp) and die profile radius(Rd). Especially, in order to control the springback, the use of the warm forming method is applied. For the warm draw-bending, five steps of temperature ranges, from room temperature to $200^{\circ}C$, were adopted. And two kinds of steel sheets, namely SCP1 and TRIP(transformation-induced plasticity), the newly developed high strength Steel, were adopted. As a result, the springback was affected by the elevated temperature and the geometry of tools in two kinds of steel sheets.

  • PDF

변형모드별 판재의 마찰특성 비교 (Comparison of Friction Coefficients of Sheet Materials in Various Deformation Modes)

  • 김영석;김기수
    • 소성∙가공
    • /
    • 제3권1호
    • /
    • pp.51-62
    • /
    • 1994
  • Cup drawing test and U-bending test were performed to evaluate the friction characteristics of sheet materials for the different deformation modes involved in stamping process. The coefficient of friction calculated from the each test was compared to that obtained from the draw bead friction test. It was clarified that the cup drawing test could be simply used for evaluating the friction characteristic of sheet material in deep drawing process with high contacting pressure. However the U-bending test is suitable to evaluate the frictional characteristic of sheet material in bending process with low contacting pressure.

  • PDF

와인딩 장력이 composite 부싱용 FRP tube의 굽힘변형에 미치는 영향 (Effect of The Bending Strain of FRP Tube for Composite Bushing with Winding Tension)

  • 조한구;유대훈;강형경
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.380-381
    • /
    • 2009
  • This paper describes effect of the bending strain of FRP tube for composite bushing with winding tension. The composite bushing can be formed, by adding silicone rubber sheds to a tube of composite materials. The FRP tube is internal insulating part of a composite bushing and is designed to ensure the mechanical characteristics. Generally the properties of FRP tube can be influenced by the winding angle, wall thickness and winding tension. As winding tension is increased glass contents was increased in the range of 70.4~76.6%. In the bending test, winding tension is increased residual displacement was decreased in the range of 14.0~12.2 mm.

  • PDF

인장 굽힘피로를 받는 부재의 피로수명과 균열관통 (Fatigue Life and Peneration Behaviour of Material under Combined Tension and Bending Stress)

  • 남기우
    • 한국해양공학회지
    • /
    • 제8권1호
    • /
    • pp.41-49
    • /
    • 1994
  • The leak-before-break(LBB) design on the large structures such as ship's hull, tank structure, pressure vessels etc. is one of the most inportant subjects for the evaluation and the assurance of safety. In these structures, various loads are acting. In some structural members, therefore, out-of-plane stress due to bending often may become with in-plane stress due to stretching. In the present report, the characteristics of fatigue life and peneration behaviour from a surface cracked plate under combined tension and bending have been studied experimentally and analytically by using eccentricity. Estimation of fatigue crack growth was done with the Newman-Raju formula before penetration, and with the stress intensity factor after penetration proposed by the author. Calculated aspect ratio showed the good agreement with the experimental result. It was also found that particular crack growth behaviour and crack shape after penetration can be satisfactorily evaluated using the K solution proposed.

  • PDF

선체중량분포의 변화에 따른 정수중 굽힘모멘트와 파중 굽힘모멘트의 특성에 대하여 (On the Characteristics of Still-Water and Wave Bending Moments with the Variations of Ship Weight Distribution)

  • 권영섭
    • 한국해양공학회지
    • /
    • 제10권3호
    • /
    • pp.3-13
    • /
    • 1996
  • An extensive research programme has been aimed at the effct of ship weight distribution on the ship responses applying ship hydroelasticity theory. In the previous works, consistent tendencies of the still-water and the wave bending moments. respectively, were found as the weight distribution was varied systematically. The paper is therefore concerned mainly with any correlation between still-water and wave bending moments with the variations of weight distribution. Although these bending moments share different features with each other, such a comparison of tendencies was plausible and informative. These and other matters for the future are discussed.

  • PDF