• Title/Summary/Keyword: behavior of failure

Search Result 3,168, Processing Time 0.028 seconds

An Experimental Study on the Flexural Behavior of RC Beams Strengthened with High-Strength Bars(1) (고장력 인장봉으로 보강된 RC보의 휨거동에 관한 실험적 연구(1))

  • Shin, Kyung-Jae;Kwak, Myong-Keun;Heo, Byung-Wook;Na, Jung-Min;Oh, Young-Suk
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.4 s.94
    • /
    • pp.527-534
    • /
    • 2006
  • This paper outlines a new strengthening technique for concrete beams using externally unbended high-strength bars. The advantages of proposed method lie in speed and simplicity of construction compared to the alternative strengthening method. Externally unbended reinforcement retains many of the advantages over external unbended prestressed tendons. It eliminates time consuming stressing operations. Clearance requirements around anchorages are reduced as access is not required for prestressing jacks. Test results of eight specimens on reinforced concrete beams using different reinforcement materials such as carbon fiber sheet, steel plate and high-tension bar are reported. The beam strengthened by carbon fiber sheet showed a brittle failure mode due to the separation of fiber. As a result of draped profile of external bar, the maximum strength of the beam were increased by up to 212 percent and the deflections were reduced by up to 65 percent. Test results show that the beams reinforced with high-tension bar are superior to reference specimens, especially for the strength and deformation capacity.

COMPARISON OF THE RESIDUAL STRESS OF THE NANOFILLED COMPOSITES (Nanofilled 복합레진의 잔류응력 비교)

  • Park, Jeong-Won
    • Restorative Dentistry and Endodontics
    • /
    • v.33 no.5
    • /
    • pp.457-462
    • /
    • 2008
  • "Residual stress" can be developed during polymerization of the dental composite and it can be remained after this process was completed. The total amount of the force which applied to the composite restoration can be calculated by the sum of external and internal force. For the complete understanding of the restoration failure behavior. these two factors should be considered. In this experiment. I compared the residual stress of the recently developed nanofilled dental composite by ring slitting methods. The composites used in this study can be categorized in two groups. one is microhybrid type-Z250, as control group, and nanofilled type-Grandio, Filtek Supreme. Ceram-X, as experimental ones. Composite ring was made and marked two reference points on the surface. Then measure the change of the distance between these two points before and after ring slitting. From the distance change, average circumferential residual stress $({\sigma}{\theta})$ was calculated. In 10 minutes and 1 hour measurement groups, Filtek Supreme showed higher residual stress than Z250 and Ceram-X. In 24 hour group, Filtek showed higher stress than the other groups. Following the result of this experiment, nanofilled composite showed similar or higher residual stress than Z250, and when comparing the Z250 and Filtek Supreme, which have quite similar matrix components. Filtek Supreme groups showed higher residual stress.

Evaluation of the Lap Splice Strengths of High Strength Headed Bars by Flexural Tests of RC Beams (RC 보의 휨실험을 통한 고강도 확대머리철근의 겹침이음 강도 평가)

  • Lee, Ji-Hyeong;Jang, Duck-Young;Kim, Seung-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.247-255
    • /
    • 2022
  • In this paper, a bending test was conducted on beams with two lap splice details when the effective depth of tensile high strength headed bars overlapped is the same and different. Through bending test, the lap splice performance of the high-strength headed bars was evaluated, and the applicability of the KDS-2021 design formula was evaluated. In the LS specimens with lap splice details where the high strength bars had the same effective depth, all specimens with 1.3 times or more of the development length of the KDS-2021 equation and 1 times or more of the ACI318-19 had the flexural failure mode after the ductile behavior to ensure sufficient lap splice performance. For specimens with details of lap joints between headed bars with different effective depth, when lap splice length is calculated by the KDS-2021 formula, the flexural stress may be transmitted so that the flexural strength at the cross section with the large effective depth and the cross section with the small effective depth becomes similar.

Effective Capacity Planning of Capital Market IT System: Reflecting Sentiment Index (자본시장 IT시스템 효율적 용량계획 모델: 심리지수 활용을 중심으로)

  • Lee, Kukhyung;Kim, Miyea;Park, Jaeyoung;Kim, Beomsoo
    • Knowledge Management Research
    • /
    • v.23 no.1
    • /
    • pp.89-109
    • /
    • 2022
  • Due to COVID-19 and soaring participation of individual investors, large-scale transactions exceeding system capacity limits have been reported frequently in the capital market. The capital market IT systems, which the impact of system failure is very critical, have encountered unexpectedly tremendous transactions in 2020, resulting in a sharp increase in system failures. Despite the fact that many companies maintained large-scale system capacity planning policies, recent transaction influx suggests that a new approach to capacity planning is required. Therefore, this study developed capital market IT system capacity planning models using machine learning techniques and analyzed those performances. In addition, the performance of the best proposed model was improved by using sentiment index that can promptly reflect the behavior of investors. The model uses empirical data including the COVID-19 period, and has high performance and stability that can be used in practice. In practical significance, this study maximizes the cost-efficiency of a company, but also presents optimal parameters in consideration of the practical constraints involved in changing the system. Additionally, by proving that the sentiment index can be used as a major variable in system capacity planning, it shows that the sentiment index can be actively used for various other forecasting demands.

The Effect of Cement Milk Grouting on the Deformation Behavior of Artifcial Rock Joints (시멘트현탁액 주입에 의한 신선한 암석절리의 역학적 특성 변화)

  • 김태혁;이정인
    • Tunnel and Underground Space
    • /
    • v.10 no.2
    • /
    • pp.180-195
    • /
    • 2000
  • Grouting has been practiced as a reliable technique to improve the mechanical properties of rock mass. But, the study of ground improvement by greeting is rare especially in jointed rock mass. In this study, joint compression test and direct shear test were performed on pure rock joint and cement milk grouted rock joint to examine the grouting effect on the property of rock joint. In the pure rock joint compression test, joint closure varied non-linearly with normal stress. But after cement milk grouting, the normal deformation characteristics of the joint was linear at the low normal stress level. As normal stress increased. deformation of the sample rapidly increased due to the stress concentration at the joint asperities. Peak shear strength of the grouted joint in low normal stress was higher than that of non-grouted joint due to the cohesion, decreased exponetially as the grout thickness increased. Thus after cement milk grouting, the failure envelope modified to a curve that has cohesion due to grout material hydration with decreased friction angle. Shear stiffness and peak dilation angle of the grouted joint decreased as the grout thickness increased. The peak shear strength from the direct shear test on grouted rock joint was represented by an empirical equation as a fuction of grout thickness and roughness mean amplitude.

  • PDF

Nonlinear Flexural Modeling of Prestressed Concrete Beams with Composite Materials (복합소재 프리스트레스트 콘크리트보의 비선형 휨 모델링)

  • ;;Naaman, Antoine
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.6
    • /
    • pp.269-280
    • /
    • 1998
  • Recently, application of composite materials such as fiber reinforced concretes(FRCs) and fiber reinforced plastics(FRPs) in conjunction with conventional structural components has become one of the main research areas. A proper use of advanced composite materials requires understanding their resistance mechanism and failure mode when they are applied to structures or their components. Particular considerations are given in this research to develop an analytical model which can predict the nonlinear flexural responses of bonded and unbonded prestressed concrete beams possibly having layers of different cementitious composite matrices in a section and/or FRP tendons. The block concept is used, which can be regarded as an intermediate modeling method between the couple method with one block and the layered method with multiply sliced layers in a section. In order to find a particular deflection point of a beam under load, solutions to the 2N-variables are found numerically by using approximate N-force equilibrium equations and N-moment equilibirum equations. The model is shown to successfully predict the flexual behavior of variously reinforced bonded and unbonded prestressed concrete beams. The model is also successful in simulating a gradually increasing load after sudden drop inload resistance due to fracture of one or more FRP tendons. This feature is useful in tracing the overall load-deflection response of a beam prestressed with brittle FRP tendons.

The Experimental Study on the Absorbed Energy of Carbon/Epoxy Composite Laminated Panel Subjected to High-velocity Impact (고속 충격을 받는 Carbon/Epoxy 복합재 적층판의 흡수 에너지 예측에 대한 실험적 고찰)

  • Cho, Hyun-Jun;Kim, In-Gul;Lee, Seokje;Woo, Kyeongsik;Kim, Jong-Heon
    • Composites Research
    • /
    • v.26 no.3
    • /
    • pp.175-181
    • /
    • 2013
  • The evaluation and prediction for the absorbed energy, residual velocity, and impact damage are the key things to characterize the impact behavior of composite laminated panel subjected to high-velocity impact. In this paper, the method to predict the residual velocity and the absorbed energy of Carbon/Epoxy laminated panel subjected to high velocity impact are proposed and examined by using quasi-static perforation test and high-velocity impact test. Total absorbed energy of specimen due to the high-velocity impact can be grouped with static energy and kinetic energy. The static energy are consisted of energy due to the failure of the fiber and matrix and static elastic energy, which are related to the quasi-static perforation energy. The kinetic energy are consisted of kinetic energy of moving part of specimen, which are modelled by three modified kinetic model. The high-velocity impact test were conducted by using air gun impact facility and compared with the predicted values. The damage area of specimen were examined by C-scan image. In the high initial impact velocity above the ballistic limit, both the static energy and the kinetic energy are known to be the major contribution of the total absorbed energy.

Seismic Fragility Evaluation of Inverted T-type Wall with a Backfill Slope Considering Site Conditions (사면 경사도가 있는 뒷채움토와 지반특성을 고려한 역T형 옹벽의 지진시 취약도 평가)

  • Seo, Hwanwoo;Kim, Byungmin;Park, Duhee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.5
    • /
    • pp.533-541
    • /
    • 2021
  • Retaining walls have been used to prevent slope failure through resistance of earth pressure in railway, road, nuclear power plant, dam, and river infrastructure. To calculate dynamic earth pressure and determine the characteristics for seismic behavior, many researchers have analyzed the nonlinear response of ground and structure based on various numerical analyses (FLAC, PLAXIS, ABAQUS etc). In addition, seismic fragility evaluation is performed to ensure safety against earthquakes for structures. In this study, we used the FLAC2D program to understand the seismic response of the inverted T-type wall with a backfill slope, and evaluated seismic fragility based on relative horizontal displacements of the wall. Nonlinear site response analysis was performed for each site (S2 and S4) using the seven ground motions to calculate various seismic loadings reflecting site characteristics. The numerical model was validated based on other numerical models, experiment results, and generalized formula for dynamic active earth pressure. We also determined the damage state and damage index based on the height of retaining wall, and developed the seismic fragility curves. The damage probabilities of the retaining wall for the S4 site were computed to be larger than those for the S2 site.

Corrosion Behavior and Ultrasonic Velocity in RC Beams with Various Cover Depth (다양한 피복두께를 가진 RC 보의 부식 거동 및 초음파 속도)

  • Jin-Won Nam;Hyun-Min Yang;Seung-Jun Kwon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.3
    • /
    • pp.184-191
    • /
    • 2023
  • With increasing corrosion in RC (Reinforced Concrete) structures, cracks occurred due to corrosion products and bearing load resistance decreased. In this study, corrosion was induced through an accelerated corrosion test (ICM: Impressed Current Method) with 140 hours of duration, and changes in USV (Ultra-Sonic Velocity), flexural failure load, and corrosion weight were evaluated before and after corrosion test. Three levels of cover depth (20 mm, 30 mm, and 40 mm) were considered, and the initial cracking period increased and the rust around steel decreased with increasing cover depth. In addition, the USV linearly decreased with decreasing cover depth and increasing amount of corrosion. In the flexural loading test, the bending capacity decreased by more than 10% due to corrosion, but a clear correlation could not be obtained since the corrosion ratio was small, so that the effect of slip was greater than that of reduced cross-sectional area of steel due to corrosion. As cover depth increased, the produced corrosion amount and USV changed with a clear linear relationship, and the cracking period due to corrosion could be estimated by the gradient of the measured corrosion current.

Stress-Strain Characteristics of Weathered Granite Soil in Plane Strain Test (평면변형시험을 이용한 화강풍화토의 응력-변형률 특성)

  • Kim, You-Seong;Lee, Jin-Kwang;Kim, Jae-Hong
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.5
    • /
    • pp.37-46
    • /
    • 2014
  • Geotechnical structures have been analyzed and constructed in various geometry conditions to maintain their stability in accordance with the characteristics of construction design. Shear strengths are generally obtained from triaxial test to apply to design analysis. Geotechnical structures under strip loading, such as earth dam, embankment, and retaining wall, have the strain in a direction, and plane strain condition. Thus, an approximate shear strengths should be applied for stability analysis suitable to ground condition. When applying shear strengths obtained from triaxial tests for slope stability analysis, the evaluation of it may underestimate the factor of safety because the implementation is not suitable for geometry condition. The paper compares shear strengths obtained from triaxial test and plane strain test based on various relative densities using weathered granite soils. Additionally, yield stress is determined by maximum axial strain 15% in triaxial test because of continuous kinematic hardening, but plane strain test can determine a failure point in critical state to evaluate the shear strengths of soils at the second plastic hardening step. This study proposes to perform an appropriate test for many geotechnical problems with plane strain condition.