DOI QR코드

DOI QR Code

Stress-Strain Characteristics of Weathered Granite Soil in Plane Strain Test

평면변형시험을 이용한 화강풍화토의 응력-변형률 특성

  • Received : 2013.12.18
  • Accepted : 2014.04.03
  • Published : 2014.05.31

Abstract

Geotechnical structures have been analyzed and constructed in various geometry conditions to maintain their stability in accordance with the characteristics of construction design. Shear strengths are generally obtained from triaxial test to apply to design analysis. Geotechnical structures under strip loading, such as earth dam, embankment, and retaining wall, have the strain in a direction, and plane strain condition. Thus, an approximate shear strengths should be applied for stability analysis suitable to ground condition. When applying shear strengths obtained from triaxial tests for slope stability analysis, the evaluation of it may underestimate the factor of safety because the implementation is not suitable for geometry condition. The paper compares shear strengths obtained from triaxial test and plane strain test based on various relative densities using weathered granite soils. Additionally, yield stress is determined by maximum axial strain 15% in triaxial test because of continuous kinematic hardening, but plane strain test can determine a failure point in critical state to evaluate the shear strengths of soils at the second plastic hardening step. This study proposes to perform an appropriate test for many geotechnical problems with plane strain condition.

다양한 지반조건을 갖고 있는 지반구조물들은 공사 설계에 대한 특성에 따라 안정성 해석을 하여 설계와 시공이 되어야 한다. 일반적으로 지반의 강도정수들은 삼축압축시험으로 분석한 결과를 설계시공에 적용하여 안정성을 해석한다. 띠하중과 같은 응력을 받고 있는 댐, 제방, 옹벽 등은 한방향의 변형이 구속되어 있는 평면변형 조건의 지반구조물들이다. 지반 조건에 맞는 안정성 해석은 적절한 강도정수들의 적용에 의해서 이루어져야 한다. 삼축압축시험에 의한 강도정수 적용은 이러한 지반구조물들을 설계할 때, 안전율이 과소평가되어 시공성과 경제성에 불리하게 작용한다. 본 연구는 화강풍화토를 대상으로 삼축압축시험과 평면변형시험을 통하여 강도정수를 산정하고 상대밀도에 따른 강도 증가에 대한 경향을 분석하고자 한다. 삼축압축시험은 응력경화가 지속적으로 발생하기 때문에 최대 변형률 15%에서 한계파괴응력을 결정짓는 반면에, 평면변형 조건에서 수행되는 시험은 강도가 증가하면서 2번의 뚜렷한 응력경화를 나타내었고, 강도정수를 결정할 수 있는 항복응력을 구분할 수 있었다.

Keywords

References

  1. Bowles, J.E. (1978), Engineering Properties of Soils and their Measurements, 2nd edition. McGraw-Hill Book Company, pp.185-188.
  2. Budhu, M. (2011), Soil Mechanics and Foundations, 3rd edition, JOHN WILEY & SONS, INC., pp.141-143.
  3. Choo, Y.S., Jang, E.R., and Chung, C.K. (2007), "Development and Verification of Plane Strain Apparatus for Various Stress Path", Conference of Korean Society of Civil Engineering, Geotechnical Engineering Session, pp.880-883.
  4. Goto, S., Tatsuoka, F., Shibuya, S., Kim, Y.S., and Sato, T. (1991), "A Simple Gauge for Local Small Strain Measurements in the Laboratory", Soils and Foundations, Vol.31, No.1, pp.136-151.
  5. KS F 2346 (2007), "Method for unconsolidated and undrained triaxial test in clay", ICS Code: 13.080, Soil quality. Pedology, Korean Agency for Technology and Standards.
  6. Lee, K.L. and Shubeck, R.T. (1971), "Plane-Strain Undrained Strength of Compacted Clay", Journal of the Soil Mechanics and Foundations Division, ASCE, Vol.97, No.Sm1, pp.219-234.
  7. Lee, Y.S., Kim, C.Y., and Chung, C.K. (2003), "A Newly-developed Plane Strain Testing Device and its Applicability", Conference of Korean Society of Civil Engineering, Geotechnical Engineering Session, pp.3645-3650.
  8. Oda, M. (1981), "Anisotropic Strength of Cohesionless Sands", Journal of Geotechnical Engineering, Division, Proceeding of ASCE, Vol.197, GT9, pp.1219-1231.
  9. Tatsuoka, F., Sakamoto, M., Kawamura, T., and Fukushima, S. (1986), "Strength and deformation characteristic of sand in plane strain compression at extremely low pressure", Soils and Foundations, Vol.26, No.1, pp.65-84. https://doi.org/10.3208/sandf1972.26.65
  10. Yasin, S.J.M. (1998), "Strength and deformation characteristics of sands in plane strain shear tests", Ph.D. thesis, University of Tokyo, Japan.