• Title/Summary/Keyword: beam deflection

Search Result 874, Processing Time 0.023 seconds

Development of Curved Beam Element with Shear Effect (전단효과를 고려한 곡선보 요소 개발)

  • 이석순;구정서;최진민
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.10
    • /
    • pp.2535-2542
    • /
    • 1993
  • Two-noded curved beam elements, CMLC (field-consistent membrane and linear curvature) and IMLC(field-inconsistent membrane and linear curvature) are developed on the basis of Timoshenko's beam theory and curvilinear coordinate. The curved beam element is developed by the separation of the radial deflection into the bending deflection. In the CMLC element, field-consistent axial strain interpolation is adapted for removing the membrane locking. The CMLC element shows the rapid and stable convergence on the wide range of curved beam radius to thickness. The field-consistent axial strain and the separation of radial deformation produces the most efficient linear element possible.

Analysis of the Motion of a Cart with an Inverted Flexible Beam and a Concentrated Tip Mass

  • Park, Sangdeok;Wankyun Chung;Youngil Youm;Lee, Jaewon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.367-372
    • /
    • 1998
  • In this paper, the mathematical model of a cut with an inverted flexible beam and a concentrated tip mass was derived. The characteristic equation for calculating the natural frequencies of the cart-beam-mass system was obtained and the motion of the system was analyzed through unconstrained modal analysis. A good positioning response of the cart without excessive vibrational motion of the tip mass could be obtained through numerical simulation using PID controller with the feedback of both the position of the cart and the deflection of the beam.

  • PDF

The Shear Strength of Prestressed Hollow-Core Slab on flexible steel beams (철골보에 연결된 프리스트레스 할로우 코아 슬래브 전단강도)

  • Hong, Sung-Gul;Park, Kyoung-Yeun;Jo, Bong-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.397-400
    • /
    • 2004
  • This research aims to estimate the shear strength of the composition of prestressed hollow-core slab and steel beam. The shear strength of prestressed hollow-core slab combined with the steel beam decreases, as the beam deflection increases to a considerable extent. Existing studies on the shear strength of prestressed hollow-core slab are mostly limited to 265mrn- and larger thickness slab on concrete beam. This study investigates the slab of 100mm-thickness combined with steel beam instead of concrete beam. Five shear connector methods are proposed and the shear strength is estimated with or without the beam deflection for each composition method, respectively. Finally the reduction coefficient $(\beta)$ for the transverse shear stress$(\tau_{zx})$, which is critical for the failure of prestressed hollow-core slab, is proposed.

  • PDF

Analysis of Structural Performance of Wood Composite I and Box Beam on Cross Section Component (I) - Calculation and Analysis of Flexural Rigidity and Deflection - (단면구성요소(斷面構成要素)에 관(關)한 목질복합(木質複合) I및 Box형 보의 구조적(構造的) 성능(性能) 분석(分析) (I))

  • Oh, Sei-Chang;Lee, Phil-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.40-55
    • /
    • 1991
  • To investigate the influence of cross section geometries on the behavior of composite beams in the case of small span to depth ratio and deep beams. the static flexural behavior of composite I-beams and Box- beams was evaluated. 12 types of composite I -beams composed of LVL flanges and particleboard or plywood web and 3 types of composite Box-beams composed of LVL flanges and plywood web were tested under one-point loading. The load-deflection curves were almost linear to failure, therefore, the behavior of tested composite beams was elastic. The theoretical flexural rigidity of composite beams was calculated and compared with observed flexural rigidity. The highest value was found in I-W type beams and the lowest value was found in G-P type beams. The difference between theoretical and observed flexural rigidity was small. Theoretical total deflection of tested composite beams was calculated using flexural rigidity and compared with actual deflection. Shear deflection of these beams was evaluated by the approximation method, solid crosss section method and elementary method. The difference between actual deflection and expected deflection was not found in D, E and F type beams. This defference was small in G, H and I type beams or Box-beam.

  • PDF

Aeroelastic Characteri stics of Rotor Blades with Trailing Edge Flaps

  • Lim, In-Gyu;Lee, In
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.8 no.1
    • /
    • pp.115-121
    • /
    • 2007
  • The aeroelastic analysis of rotor blades with trailing edge flaps, focused on reducing vibration while minimizing control effort, are investigated using large deflection-type beam theory in forward flight. The rotor blade aerodynamic forces are calculated using two-dimensional quasi-steady strip theory. For the analysis of forward flight, the nonlinear periodic blade steady response is obtained by integrating the full finite element equation in time through a coupled trim procedure with a vehicle trim. The objective function, which includes vibratory hub loads and active flap control inputs, is minimized by an optimal control process. Numerical simulations are performed for the steady-state forward flight of various advance ratios. Also, numerical results of the steady blade and flap deflections, and the vibratory hub loads are presented for various advance ratios and are compared with the previously published analysis results obtained from modal analysis based on a moderate deflection-type beam theory.

Dynamic analysis of concrete column reinforced with Sio2 nanoparticles subjected to blast load

  • Azmi, Masoud;Kolahchi, Reza;Bidgoli, Mahmood Rabani
    • Advances in concrete construction
    • /
    • v.7 no.1
    • /
    • pp.51-63
    • /
    • 2019
  • The project focuses on the dynamic analysis of concrete beams reinforced with silica-nanoparticles under blast loading. The structure is located at two boundary conditions. The equivalent composite properties are determined using Mori-Tanak model. The structure is simulated with sinusoidal shear deformation theory. Employing nonlinear strains-displacements, stress-strain, the energy equations of beam were obtained and using Hamilton's principal, the governing equations were derived. Using differential quadrature methods (DQM) and Newmark method, the dynamic deflection of the structure is obtained. The influences of volume percent and agglomeration of silica nanoparticles, geometrical parameters of beam, boundary condition and blast load on the dynamic deflection were investigated. Results showed that with increasing volume percent of silica nanoparticles, the dynamic deflection decreases.

SPECTRAL ANALYSIS FOR THE CLASS OF INTEGRAL OPERATORS ARISING FROM WELL-POSED BOUNDARY VALUE PROBLEMS OF FINITE BEAM DEFLECTION ON ELASTIC FOUNDATION: CHARACTERISTIC EQUATION

  • Choi, Sung Woo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.1
    • /
    • pp.71-111
    • /
    • 2021
  • We consider the boundary value problem for the deflection of a finite beam on an elastic foundation subject to vertical loading. We construct a one-to-one correspondence �� from the set of equivalent well-posed two-point boundary conditions to gl(4, ℂ). Using ��, we derive eigenconditions for the integral operator ��M for each well-posed two-point boundary condition represented by M ∈ gl(4, 8, ℂ). Special features of our eigenconditions include; (1) they isolate the effect of the boundary condition M on Spec ��M, (2) they connect Spec ��M to Spec ����,α,k whose structure has been well understood. Using our eigenconditions, we show that, for each nonzero real λ ∉ Spec ����,α,k, there exists a real well-posed boundary condition M such that λ ∈ Spec ��M. This in particular shows that the integral operators ��M, arising from well-posed boundary conditions, may not be positive nor contractive in general, as opposed to ����,α,k.

Support Deflection Effects in Slabs with Beam and Girder (보-거더 시스템 슬래브에서 지지부 처짐영향에 관한 연구)

  • 곽효경;송종영
    • Computational Structural Engineering
    • /
    • v.11 no.1
    • /
    • pp.237-249
    • /
    • 1998
  • In this study the support deflection effects in beam-girder slabs which are broadly being adopted in building structures are studied for both distributed loads and concentrated vehicle loads. Taking the finite element analysis of slabs supported with one or two cross beams, the member forces of slabs including the support stiffness have been calculated. Based on the obtained numerical results and regression analysis of those, correction factors of member forces for slabs supported with girders and cross beams have been proposed. Finally, the validity of the proposed correction factors are demonstrated through a typical design example.

  • PDF

DYNAMIC CHARACTERISTICS OF A ROTATING TIMOSHENKO BEAM SUBJECTED TO A VARIABLE MAGNITUDE LOAD TRAVELLING AT VARYING SPEED

  • OMOLOFE, BABATOPE;OGUNYEBI, SEGUN NATHANIEL
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.20 no.1
    • /
    • pp.17-35
    • /
    • 2016
  • In this study, the dynamic behaviour of a rotating Timoshenko beam when under the actions of a variable magnitude load moving at non-uniform speed is carried out. The effect of cross-sectional dimension and damping on the flexural motions of the elastic beam was neglected. The coupled second order partial differential equations incorporating the effects of rotary and gyroscopic moment describing the motions of the beam was scrutinized in order to obtain the expression for the dynamic deflection and rotation of the vibrating system using an elegant technique called Galerkin's Method. Analyses of the solutions obtained were carried out and various results were displayed in plotted curve. It was found that the response amplitude of the simply supported beam increases with an increase in the value of the foundation reaction modulus. Effects of other vital structural parameters were also established.

A Study on the Dynamic Behavior of a Simply Supported Beam with Moving Masses and Cracks (이동질량과 크랙을 가진 단순지지 보의 동특성에 관한 연구)

  • 윤한익;손인수;조정래
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.6
    • /
    • pp.47-52
    • /
    • 2003
  • To determine the effect of transverse open crack on the dynamic behavior of simply-supported Euler-Bernoulli beam with the moving masses, an iterative modal analysis approach is developed. The influence of depth and position of the crack in the beam, on the dynamic behavior of the simply supported beam system, have been studied by numerical method. The cracked section is represented by a local flexibility matrix, connecting two undamaged beam segments that is, the crack is modeled as a rotational spring. This flexibility matrix defines the relationship between the displacements and forces across the crack section, and is derived by applying a fundamental fracture mechanics theory. As the depth of the crack is increased, the mid-span deflection of the simply-supported beam, with the moving mass, is increased. The crack is positioned in the middle point of the pipe, and the mid-span defection of the simply-supported pipe represents maximum deflection.