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ABSTRACT. In this study, the dynamic behaviour of a rotating Timoshenko beam when under
the actions of a variable magnitude load moving at non-uniform speed is carried out. The
effect of cross-sectional dimension and damping on the flexural motions of the elastic beam
was neglected. The coupled second order partial differential equations incorporating the effects
of rotary and gyroscopic moment describing the motions of the beam was scrutinized in order
to obtain the expression for the dynamic deflection and rotation of the vibrating system using
an elegant technique called Galerkin’s Method. Analyses of the solutions obtained were carried
out and various results were displayed in plotted curve. It was found that the response amplitude
of the simply supported beam increases with an increase in the value of the foundation reaction
modulus. Effects of other vital structural parameters were also established.

1. INTRODUCTION

Studies concerning vibrating bodies resting on an elastic foundation carrying moving loads
are of considerable practical importance and have been a subject of numerous scientific inves-
tigations by different authors in past few years [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20]. In most of the studies available in literature, such as the work of Sadiku
and Leipolz [21], Oni and Awodola [22], the scope of the problem of assessing the dynamic
response of a structural member under the passage of moving load has been limited to that
of thin beam or thick beam. Kolousek et al. [23] studied works on uniform thin beam. In
their analysis the adopted a normal modes method, effects of damping and foundation were not
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included in their analysis. Kenny [24] worked on the problem of infinite elastic beam resting
on elastic foundation and under the influence of a dynamic load moving with constant speed.
Unlike Bernoulli-Euler beam or Rayleigh beam, forced vibrations of deep beam have received
little attention for the past few years. Among few authors who have published scholarly article
on the dynamic characteristics of a Timoshenko beam subjected moving loads are Oni [25]
who considered the problem of a harmonic time-dependent concentrated force moving at con-
stant velocity. The method of integral transform method was adopted. Series solution which
converges is obtained for the deflection of simply supported beam. Travelling force on a Tim-
oshenko beam has also been studied by Florence [26], Huang [27] studied the effect of rotary
inertia and of shear deformation on the frequency and normal mode equations of uniforms with
simple end conditions. Deterministic and random vibration of an axially loaded Timoshenko
beam resting on an elastic foundation has been considered by Chang [28]. Vibration and re-
liability of a rotating beam with random properties under random excitation was presented by
Hosseini and Khadem [29]. More recently, Omolofe et al. [30] studied the transverse motion
of non-prismatic deep beam under the actions of variable magnitude moving loads.

In all these aforementioned studies, investigations are limited to the cases where the veloc-
ity of the travelling masses is held constant throughout its motion on the structure. However,
situation arises when a travelling mass may accelerate by a forward force or decelerate, reduce
speed and come to rest at any desired position on the beam thereby causing the friction between
the mass and the beam to increase considerably. Wang [31] studied the dynamical analysis of
a finite inextensible beam with an attached accelerating mass. He employed Galerkin proce-
dure in conjunction with the method of numerical integration to tackle the partial differential
equation which describes the transient vibration of the beam mass system. He concluded that
the applied forward force amplifies the speed of the mass and the displacement of the beam.
To the authors best of knowledge, studies concerning structural members where the effects of
the rotary inertia correction factor and shear deformation are incorporated into the governing
equation of motions are not common in literature and where they rarely exist the traversing
load is assumed to travel with constant speed.

This present study therefore concerns the dynamic characteristics of a uniform beam resting
on elastic foundation of the Winkler type and incorporating the effects of rotary inertia correc-
tion factor and shear deformation into the governing equation of motion. It is assumed that the
speed at which the travelling load traverses the structural elements is time varying.

2. MATHEMATICAL FORMULATION

Consider a deep elastic beam having length L and resting on an elastic foundation with
subgrade reaction modulus K which is directly proportional to beam deflection. If the system
does not experience friction as the beam maintain contact with the subgtrade, the deflection
ϕ(x, t) and rotation ψ(x, t) is aptly described by the system of partial differential equations

m
∂2ϕ (x, t)

∂t2
−K∗GF

[
∂2ϕ (x, t)

∂x2
− ∂ψ (x, t)

∂x

]
+Kϕ (x, t) = P (x, t) (2.1)
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EJ
∂2ψ (x, t)

∂x2
+K∗GF

[
∂ϕ (x, t)

∂x
− ψ (x, t)

]
− JD

∂2ψ (x, t)

∂t2
= 0 (2.2)

Where m is the constant mass per unit length of the beam, K∗ is a constant dependent on the
shape of the cross section, G is the modulus of elasticity in shear, F is the cross sectional area,
P (x, t) is the harmonic force, E is the Young modulus of the beam, J is the constant moment
of inertia of the beam cross section and D is the mass per unit volume.

Furthermore, at each of the boundary points there are two boundary conditions of the type

ϕ (0, t) = 0; ψ (0, t) = 0 (2.3)

∂ϕ (0, t)

∂x
= 0;

∂ψ (L, t)

∂x
= 0 (2.4)

and the initial conditions are

ϕ (x, 0) = 0 =
∂ϕ (x, 0)

∂t
(2.5)

ψ (x, 0) = 0 =
∂ψ (x, 0)

∂t
(2.6)

The effect of gyroscopic moment ψ̇ (x, t) is incorporated into the governing equations (2.1)
and (2.2) to induce a displacement component perpendicular to the direction of the load. While
ψ̈ (x, t) represents the effect of rotary inertia. Since the velocity of our moving force is non-
uniform, the moving force P (x, t) acting on the beam is chosen as

P (x, t) = P cosωtδ (x− f (t)) (2.7)

where ω is the circular frequency of the harmonic load, δ (·) and f (t) is the distance covered
by the moving load at any time t and is given by

f (t) = x0 + γ sinβt (2.8)

where x0 is the equilibrium position of the longitudinal oscillating load, γ is the longitudinal
amplitude of oscillation of the load and β is the longitudinal frequency of the load. Further-
more, for the variable elastic foundation function K(x) we adopt the example in [30] and we
have

K(x) = K0

(
4x− 3x2 + x3

)
(2.9)

3. SOLUTION TECHNIQUE AND PROCEDURE

To solve the beam problem stated above, we shall use an elegant solution technique called
Galerkin’s method. This method requires that the solutions of the deflection and the rotation of
the coupled beam problems (2.1) and (2.2) be written as

ϕii (x, t) =

n∑
i=1

Vi (t)Ui (x) (3.1)

and

ψii (x, t) =
n∑

i=1

Yi (t)Xi (x) (3.2)
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The function Ui (x) and Xi (x) are usually chosen to satisfy the pertinent boundary conditions.
Thus, substituting equations (3.1) and (3.2) into the system of equations (2.1) and (2.2), yields

m

n∑
i=1

V̈i (t)Ui (x)−K∗GF

[
n∑

i=1

Vi (t)U
′′
i (x)−

n∑
i=1

Yi (t)X
′
i (x)

]
+K (x)

n∑
i=1

Vi (t)Ui (x)

= P cosωtδ [x− (x0 + γ sinβt)] (3.3)

and

EJ
n∑

i=1

Yi (t)X
′′
i (x) +K∗GF

[
n∑

i=1

Vi (t)U
′
i (x)−

n∑
i=1

Yi (t)Xi (x)

]
− JD

n∑
i=1

Ÿi (t)Xi (x)

= 0 (3.4)

To determine the expression for Vi(t) and Yi(t), the expression on the left hand side of the
equations (3.3) and (3.4) are required to be orthogonal to functions Uj(x) and Xj(x) respec-
tively. Thus,

∫ L

0

[
n∑

i=1

{
m

n∑
1=1

V̈i (t)Ui (x)−K∗GF
[
Vi (t)U

′′
i (x)− Yi (t)X

′
i (x)

]
+K (x)Vi (t)Ui (x)

}

− P cosωtδ [x− (x0 + γ sinβt)]

]
· Uj (x) dx = 0 (3.5)

and∫ L

0

[
n∑

i=1

EJYi (t)X
′′
i (x) +K∗GF

[
Vi (t)U

′
i (x)− Yi (t)Xi (x)

]
− JDŸi (t)Xi (x)

]
·Xj (x) dx = 0 (3.6)

Equations (3.5) and (3.6) after some rearrangements yields,

n∑
i=1

{
P1 (i, j) V̈i (t) + P2 (i, j)Vi (t) + P3 (i, j)Yi (t)

}
= P cosωtUj (x0 + γ sinβt) (3.7)

and
n∑

i=1

(
Q1 (i, j) Ÿi (t) +Q2 (i, j)Vi (t) +Q3 (i, j)Yi (t)

)
= 0 (3.8)
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where

P1 (i, j) = m

∫ L

0
Ui (x)Uj (x) dx,

P2 (i, j) =

∫ L

0

[
−K∗GFU

′
i (x)Uj (x) +K (x)Ui (x)Uj (x)

]
dx

P3 (i, j) =

∫ L

0
K∗GFX

′
i (x)Uj (x) dx,

Q1 (i, j) = JD

∫ L

0
Xi (x)Uj (x) dx

Q2 (i, j) =

∫ L

0
K∗GFU

′
i (x)Uj (x) dx,

Q3 (i, j) =

∫ [
EJX

′′
i (x)Uj (x)−K∗GFXi (x)Uj (x)

]
dx

(3.9)

Since our beam is assumed to have simple supports at both ends x = 0 and L = 0, the

mode functions Ui (x) and Xi (x), are chosen to be sin
iπx

L
and cos

iπx

L
respectively. Thus

substituting these into integrals (3.9), one obtains

P1 (i, j) =
mL

2
, P2 (i, j) = K0L

2

(
1− L

2
+
L2

8

)
+
i2π2

L2
K∗GF · L

2
,

P3 (i, j) =
iπ

L
K∗GF · L

2
, Q1 (i, j) = −JDL

2
,

Q2 (i, j) =
iπ

L
K∗GF · L

2
, Q3 (i, j) =

[
EJi2π2

L2
+K∗GF

]
· L
2

(3.10)

Now considering only the ith concentrated moving force, equation (3.7) and (3.8) can be sim-
plified further to give

P1 (i, j) V̈i (t) + P2 (i, j)Vi (t) + P3 (i, j)Yi (t) = P0 cosωt cos (γ sinβt)

+ P1 cosωt sin (γ sinβt)
(3.11)

and
Q1 (i, j) Ÿi (t) +Q2 (i, j)Vi (t) +Q3 (i, j) = 0 (3.12)

where

P0 = P sin
jπx0
L

, P1 = P cos
jπx0
L

, and γ =
jπx

L
(3.13)

In order to further simplify equation (3.11), use is made of the following Bessel relations.

sin (γ sinβt) = 2
∞∑
i=0

J2k−1 (γ) sin ([2k+]βt) (3.14)
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and

cos (γ sinβt) = J0 (γ) + 2
∞∑
k=0

J2k (γ) cos (2kβt) (3.15)

where

Jk (γ) =
∞∑

m=0

(−1)m
( γ
m

)k+2m 1

m! (k + 1)!
(3.16)

is the modified Bessel function of the first kind of order k.
In view of the equation (3.14) and (3.15), equation (3.11) becomes

P1 (i, j) V̈i (t) + P2 (i, j)Vi (t) + P3 (i, j)Yi (t)

= P0J0 (γ) cosωt+ 2P0

∞∑
k=1

J2k (γ) cosωt cos (2kβt)

+ 2P1

∞∑
k=0

J2k−1 (γ) cosωt sin [(2k + 1)βt] (3.17)

and
Q1 (i, j) Ÿi (t) +Q2 (i, j)Vi (t) +Q3 (i, j)Yi (t) = 0 (3.18)

which can further be simplified to take the form

P1 (i, j) V̈i (t) + P2 (i, j)Vi (t) + P3 (i, j)Yi (t)

= P0J0 (γ) cosωt+ 2P0

∞∑
k=1

J2k (γ) [cos η1t− cos η2t]

+ 2P1

∞∑
k=0

J2k−1 (γ) [sin η3t− sin η4t] (3.19)

and
Q1 (i, j) Ÿi (t) +Q2 (i, j)Vi (t) +Q3 (i, j)Yi (t) = 0 (3.20)

where

η1 = ω + 2kβ, η2 = ω − 2kβ, η3 = ω + (2k + 1)β, η4 = ω − (2k + 1)β (3.21)

Subjecting the system of ordinary differential equations (3.19) and (3.20), to a Laplace trans-
form

(̃·) =
∫ ∞

0
e−stdt (3.22)

In conjunction with the initial conditions defined in (2.5) and (2.6), one obtains the following
algebraic simultaneous equations[
P1 (i, j)S

2 + P2 (i, j)
]
Vi (S) + P3 (i, j)Yi (S)

= P0J0 (γ)

[
S

S2 + ω2

]
+ P0

∞∑
k=0

J2k (γ)

[
S

S2 + η21
− S

S2 + η22

]
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+ P1

∞∑
k=0

J2k+1 (γ)

[
η3

S2 + η23
− η4
S2 + η24

]
(3.23)

and [
Q1 (i, j)S

2 +Q3 (i, j)
]
Yi (S) +Q2 (i, j)Vi (S) = 0 (3.24)

In order to solve the above system, the following representations are made

Ω0 =

∣∣∣∣ P1 (i, j)S
2 + P2 (i, j) P3 (i, j)

Q2 (i, j) Q1 (i, j) +Q3 (i, j)

∣∣∣∣ (3.25)

Ω1 =

∣∣∣∣ Ω1(1, 1) P3 (i, j)
0

(
Q1 (i, j)S

2 +Q3 (i, j)
) ∣∣∣∣ (3.26)

where

Ω1(1, 1) =

(
P0J0 (γ)

[
S

S2 + ω2

]
+ P0

∞∑
k=0

J2k (γ)

[
S

S2 + η21
− S

S2 + η22

]

+P1

∞∑
k=0

J2k−1 (γ)

[
η3

S2 + η23
− η4
S2 + η24

])
and

Ω2 =

∣∣∣∣ (P1 (i, j)S
2 + P2 (i, j)

)
Ω2(1, 2)

Q2 (i, j) 0

∣∣∣∣ (3.27)

where

Ω2(1, 2) =

(
P0J0 (γ)

[
S

S2 + ω2

]
+ P0

∞∑
k=0

J2k (γ)

[
S

S2 + η21
− S

S2 + η22

]

+P1

∞∑
k=0

J2k−1 (γ)

[
η3

S2 + η23
− η4
S2 + η24

])
thus

Vi (S) =

(
Q1 (i, j)S

2 +Q3 (i, j)
)
Ω2(1, 2)

P1 (i, j)Q1 (i, j)S4 + (P1 (i,)Q3 (i, j) + P2 (i, j)Q1 (i, j))S2 − P3 (i, j)Q2 (i, j)
(3.28)

and

Yi (S) =
Q2 (i, j)Ω1(1, 1)

P1 (i, j)Q1 (i, j)S4 + (P1 (i,)Q3 (i, j) + P2 (i, j)Q1 (i, j))S2 − P3 (i, j)Q2 (i, j)
(3.29)

Furthermore, equation (3.28) can be re-written in the form

Vi (S) =

(
Q1 (i, j)S

2 +Q3 (i, j)
)
Ω2(1, 2)

B1 [(S2 + ϕ2) (S2 + φ2)]
(3.30)
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and

Yi (S) =
Q2 (i, j) Ω1(1, 1)

B1 [(S2 + ϕ2) (S2 + φ2)]
(3.31)

where

ϕ =

√√√√ B2

2B1
−
(
B2

2

4B2
1

− B3

B1

) 1
2

, φ =

√√√√ B2

2B1
+

(
B2

2

4B2
1

− B3

B1

) 1
2

B1 = P1 (i, j)Qi (i, j) , B2 = P1 (i,)Q3 (i, j) + P2 (i, j)Q1 (i, j) , (3.32)

B3 = −P3 (i, j)Q2 (i, j)

Using partial fractions technique, equations (3.30) and (3.31) can further be rewritten as

Vi (S) =
1

B1

([
Q1 (i, j)ϕ

2 −Q3 (i, j)

(φ2 − ϕ2)
· 1

S2 + φ2

]
−
[[
Q1 (i, j)ϕ

2 −Q3 (i, j)

(φ2 − ϕ2)
· 1

S2 + ϕ2

]])
·

(
P0J0 (γ)

[
S

S2 + ω2

]
+ P0

∞∑
k=0

J2k (γ)

[
S

S2 + η21
− S

S2 + η22

]
(3.33)

+P1

∞∑
k=0

J2k−1 (γ)

[
η3

S2 + η23
− η4
S2 + η24

])

and

Vi (S) =
1

B1

Q2 (i, j)

(φ2 − ϕ2)

(
1

S2 + ϕ2
− 1

S2 + ϕ2

)
·
(
P0J0 (γ)

[
S

S2 + ω2

]
+P0

∞∑
k=0

J2k (γ)

[
S

S2 + η21
− S

S2 + η22

]
+ P1

∞∑
k=0

J2k−1 (γ)

[
η3

S2 + η23
− η4
S2 + η24

])
(3.34)
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which after some simplifications and rearrangements gives,

Vi (S) =
P0J0 (γ)

B1

([
Q1 (i, j)φ

2

φ2 − ϕ2
− Q3 (i, j)

φ2 − ϕ2

]
· 1

S2 + φ2
· S

S2 + ω2

−
[
Q1 (i, j)ϕ

2

φ2 − ϕ2
− Q3 (i, j)

φ2 − ϕ2

]
· 1

S2 + ϕ2
· S

S2 + ω2

)
+
P0

B1

∞∑
k=1

J2k (γ)

([
Q1 (i, j)φ

2

φ2 − ϕ2
− Q3 (i, j)

φ2 − ϕ2

]
· 1

S2 + φ2
· S

S2 + η21

−
[
Q1 (i, j)ϕ

2

φ2 − ϕ2
− Q3 (i, j)

φ2 − ϕ2

]
· 1

S2 + ϕ2
· S

S2 + η21

−
[
Q1 (i, j)φ

2

φ2 − ϕ2
− Q3 (i, j)

φ2 − ϕ2

]
· 1

S2 + φ2
· S

S2 + η22

−
[
Q1 (i, j)ϕ

2

φ2 − ϕ2
− Q3 (i, j)

φ2 − ϕ2

]
· 1

S2 + ϕ2
· S

S2 + η22

)
+
P1

B1

∞∑
k=0

J2k+1 (γ)

([
Q1 (i, j)φ

2

φ2 − ϕ2
− Q3 (i, j)

φ2 − ϕ2

]
· 1

S2 + φ2
· S

S2 + η23

−
[
Q1 (i, j)ϕ

2

φ2 − ϕ2
− Q3 (i, j)

φ2 − ϕ2

]
· 1

S2 + ϕ2
· S

S2 + η23

−
[
Q1 (i, j)φ

2

φ2 − ϕ2
− Q3 (i, j)

φ2 − ϕ2

]
· 1

S2 + φ2
· S

S2 + η24

−
[
Q1 (i, j)ϕ

2

φ2 − ϕ2
− Q3 (i, j)

φ2 − ϕ2

]
· 1

S2 + ϕ2
· S

S2 + η24

)

(3.35)

and

Yi (S) =
P0J0 (γ)Q2 (i, j)

B1 (φ2 − ϕ2)

[
1

S2 + ϕ2
· S

S2 + ω2
− 1

S2 + φ2
· S

S2 + ω2

]
+

P0Q2 (i, j)

B1 (φ2 − ϕ2)

∞∑
k=1

J2k (γ)

[
1

S2 + φ2
· S

S2 + η21

− 1

S2 + ϕ2
· S

S2 + η21
−
(

1

S2 + ϕ2
· S

S2 + η22
− 1

S2 + φ2
· S

S2 + η22

)]
+

P1Q2 (i, j)

B1 (φ2 − ϕ2)

∞∑
k=0

J2k+1 (γ)

[
1

S2 + ϕ2
· S

S2 + η23
− 1

S2 + φ2
· S

S2 + η23

−
(

1

S2 + ϕ2
· S

S2 + η24
− 1

S2 + φ2
· S

S2 + η24

)]

(3.36)



26 B. OMOLOFE AND S.N. OGUNYEBI

In order to obtain the Laplace inversion of equations (35) and (36), the following representa-
tions are employed

g1 (S) =
S

S2 + ω2
, g2 (S) =

S

S2 + η21
, g3 (S) =

S

S2 + η22
, g4 (S) =

S

S2 + η23

g5 (S) =
S

S2 + η24
, f1 (S) =

φ

S2 + φ2
, f2 (S) =

ϕ

S2 + ϕ2

(3.37)

so that the Laplace inversion of (35) and (36) is the convolution of gj(s) and fi(s) defined as

fi (S) ∗ gj (S) =
∫ t

0
fi (t− u) gj (u) du i = 1, 2 and j = 1, 2, 3, 4, 5 (3.38)

Thus the Laplace inversions of (35) and (36) are respectively given as

Vi (t) =
P0J0 (γ)

B1

{[
Q1 (i, j)φ

2

φ2 − ϕ2
− Q3 (i, j)

φ2 − ϕ2

]
·H1 −

[
Q1 (i, j)ϕ

2

φ2 − ϕ2
− Q3 (i, j)

φ2 − ϕ2

]
·H2

}
+
P0

B1

∞∑
k=1

J2k (γ)

{[
Q1 (i, j)φ

2

φ2 − ϕ2
− Q3 (i, j)

φ2 − ϕ2

]
·H3 −

[
Q1 (i, j)ϕ

2

φ2 − ϕ2
− Q3 (i, j)

φ2 − ϕ2

]
·H4

−
[
Q1 (i, j)φ

2

φ2 − ϕ2
− Q3 (i, j)

φ2 − ϕ2

]
·H5 −

[
Q1 (i, j)ϕ

2

φ2 − ϕ2
− Q3 (i, j)

φ2 − ϕ2

]
·H6

}
+
P1

B1

∞∑
k=0

J2k+1 (γ)

{[
Q1 (i, j)φ

2

φ2 − ϕ2
− Q3 (i, j)

φ2 − ϕ2

]
·H7 −

[
Q1 (i, j)ϕ

2

φ2 − ϕ2
− Q3 (i, j)

φ2 − ϕ2

]
·H8

−
[
Q1 (i, j)φ

2

φ2 − ϕ2
− Q3 (i, j)

φ2 − ϕ2

]
·H9 −

[
Q1 (i, j)ϕ

2

φ2 − ϕ2
− Q3 (i, j)

φ2 − ϕ2

]
·H10

}
(3.39)

and

Yi (t) =
P0J0 (γ)Q2 (i, j)

B1 (φ2 − ϕ2)
[H2 −H1] +

P0Q2 (i, j)

B1 (φ2 − ϕ2)

∞∑
k=1

J2k (γ) [H4 −H3 −H6 +H5]

+
P1Q2 (i, j)

B1 (φ2 − ϕ2)

∞∑
k=0

J2k+1 (γ) [H8 −H7 −H10 +H9] (3.40)
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where

H1 =
1

φ

∫ L

0
sinφ (t− u) cosωudu H2 =

1

ϕ

∫ L

0
sinϕ (t− u) cosωudu

H3 =
1

φ

∫ L

0
sinφ (t− u) cos η1udu H4 =

1

ϕ

∫ L

0
sinϕ (t− u) cos η1udu

H5 =
1

φ

∫ L

0
sinφ (t− u) cos η2udu H6 =

1

ϕ

∫ L

0
sinϕ (t− u) cos η2udu

H7 =
1

φ

∫ L

0
sinφ (t− u) cos η3udu H8 =

1

ϕ

∫ L

0
sinϕ (t− u) cos η3udu

H9 =
1

φ

∫ L

0
sinφ (t− u) cos η4udu H10 =

1

ϕ

∫ L

0
sinϕ (t− u) cos η4udu

(3.41)

By trigonometric identities, it can be shown that

1

β

∫ t

0
sinB (t− u) sinAudu =

B sinBt

B2 −A2

[
sinAt sinBt− A

B
(cosAt cosBt− 1)

]
+
B cosBt

B2 −A2

[
sinAt cosBt− A

B
cosAt sinBt

]
and

1

β

∫ t

0
sinB (t− u) cosAudu =

A sinBt

A2 −B2

[
cosBt sinAt− B

A
sinBt cosAt

]
+
A cosBt

A2 −B2

[
sinBt sinAt− B

A
(cosBt cosAt− 1)

]
(3.42)

Integrals (3.41), taking into account the identities (3.42) become,

H1 =
ω sinφt

φ (ω2 − φ2)

(
cosφt sinωt− φ

ω
sinφt cosωt

)
− ω cosφt

φ (ω2 − φ2)

(
sinφt sinωt− φ

ω
(cosφt cosωt− 1)

)
H2 =

ω sinϕt

ϕ (ω2 − ϕ2)

(
cosϕt sinωt− ϕ

ω
sinϕt cosωt

)
− ω cosϕt

ϕ (ω2 − ϕ2)

(
sinϕt sinωt− ϕ

ω
(cosϕt cosωt− 1)

)
H3 =

η1 sinφt

φ
(
η21 − φ2

) (cosφt sin η1t− φ

η1
sinφt cos η1t

)
− η1 cosφt

φ
(
η21 − φ2

) (sinφt sin η1t− φ

η1
(cosφt cos η1t− 1)

)
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H4 =
η1 sinϕt

ϕ
(
η21 − ϕ2

) (cosϕt sin η1t− ϕ

η1
sinϕt cos η1t

)
− η1 cosϕt

ϕ
(
η21 − ϕ2

) (sinϕt sin η1t− ϕ

η1
(cosϕt cos η1t− 1)

)
H5 =

η2 sinφt

φ
(
η22 − φ2

) (cosφt sin η2t− φ

η2
sinφt cos η2t

)
− η2 cosφt

φ
(
η22 − φ2

) (sinφt sin η2t− φ

η2
(cosφt cos η2t− 1)

)
(3.43)

H6 =
η2 sinϕt

ϕ
(
η22 − ϕ2

) (cosϕt sin η2t− ϕ

η2
sinϕt cos η2t

)
− η2 cosϕt

ϕ
(
η22 − ϕ2

) (sinϕt sin η2t− ϕ

η2
(cosϕt cos η2t− 1)

)
H7 =

η3 sinφt

φ
(
η23 − φ2

) (cosφt sin η3t− φ

η3
sinφt cos η3t

)
− η3 cosφt

φ
(
η23 − φ2

) (sinφt sin η3t− φ

η3
(cosφt cos η3t− 1)

)
H8 =

η3 sinϕt

ϕ
(
η23 − ϕ2

) (cosϕt sin η3t− ϕ

η3
sinϕt cos η3t

)
− η3 cosϕt

ϕ
(
η23 − ϕ2

) (sinϕt sin η3t− ϕ

η3
(cosϕt cos η3t− 1)

)
H9 =

η4 sinφt

φ
(
η24 − φ2

) (cosφt sin η4t− φ

η4
sinφt cos η4t

)
− η4 cosφt

φ
(
η24 − φ2

) (sinφt sin η4t− φ

η4
(cosφt cos η4t− 1)

)
H10 =

η4 sinϕt

ϕ
(
η24 − ϕ2

) (cosϕt sin η4t− ϕ

η4
sinϕt cos η4t

)
− η4 cosϕt

ϕ
(
η24 − ϕ2

) (sinϕt sin η4t− ϕ

η4
(cosϕt cos η4t− 1)

)
Thus, in view of expression (3.1), and taking into account (3.39), one obtains for the this
vibrating system,
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ϕi (x, t) =

n∑
i=1

{(
P0J0 (γ)

B1

{[
Q1 (i, j)φ

2

φ2 − ϕ2
− Q3 (i, j)

φ2 − ϕ2

]
·H1 −

[
Q1 (i, j)ϕ

2

φ2 − ϕ2
− Q3 (i, j)

φ2 − ϕ2

]
·H2

})

+

(
P0

B1

∞∑
k=1

J2k (γ)

{[
Q1 (i, j)φ

2

φ2 − ϕ2
− Q3 (i, j)

φ2 − ϕ2

]
·H3 −

[
Q1 (i, j)ϕ

2

φ2 − ϕ2
− Q3 (i, j)

φ2 − ϕ2

]
·H4

−
[
Q1 (i, j)φ

2

φ2 − ϕ2
− Q3 (i, j)

φ2 − ϕ2

]
·H5 −

[
Q1 (i, j)ϕ

2

φ2 − ϕ2
− Q3 (i, j)

φ2 − ϕ2

]
·H6

})
+

(
P1

B1

∞∑
k=0

J2k+1 (γ)

{[
Q1 (i, j)φ

2

φ2 − ϕ2
− Q3 (i, j)

φ2 − ϕ2

]
·H7 −

[
Q1 (i, j)ϕ

2

φ2 − ϕ2
− Q3 (i, j)

φ2 − ϕ2

]
·H8

−
[
Q1 (i, j)φ

2

φ2 − ϕ2
− Q3 (i, j)

φ2 − ϕ2

]
·H9 −

[
Q1 (i, j)ϕ

2

φ2 − ϕ2
− Q3 (i, j)

φ2 − ϕ2

]
·H10

})}
sin

iπx

L

which represents the response amplitude of a prismatic deep beam when under the actions of
harmonic variable magnitude load travelling at time dependent speed.

Similarly, in view of expression (3.2), taking into account of (3.40) one obtains

ψii (x, t) =
n∑

i=1

(
P0J0 (γ)Q2 (i, j)

B1 (φ2 − ϕ2)
[H2 −H1] +

P0Q2 (i, j)

B1 (φ2 − ϕ2)

∞∑
k=1

J2k (γ) [H4 −H3 −H6 +H5]

+
P1Q2 (i, j)

B1 (φ2 − ϕ2)

∞∑
k=0

J2k+1 (γ) [H8 −H7 −H10 +H9]

)
· cos iπx

L

(3.44)
which represents the rotation of the dynamical system.

4. COMMENTS ON THE CLOSED FORM SOLUTION

It is well known that the displacement response of an engineering structure under excitation
may grow without bound and when this happens it leads to the occurrence called resonance.
This occurrence of resonance in structural and highway engineering is quite undesirable. This
is so because, its effects on such dynamical system could be devastating. In particular, it causes
cracks, permanent deformation and destruction in structures and makes the structural systems
unsaved for its occupants. Thus, it is very pertinent at this juncture to establish the conditions
under which this undesirable phenomenon may occur. Equations (3.42) and (3.44) clearly
indicates that the vibrating system under discussion reaches a state of resonance whenever

[P1 (i,)Q3 (i, j) + P2 (i, j)Q1 (i, j)]
2 = −4 · (P1 (i, j)Qi (i, j)) · P3 (i, j)Q2 (i, j) ,

ω = −2kβ, ω = 2kβ, ω = − (2k + 1)β, ω = (2k + 1)β
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ω =

(
B2

2B1
−

√
B2

2

4B2
1

− B3

B1

) 1
2
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B2

2B1
+

√
B2

2

4B2
1

− B3

B1

) 1
2
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(
B2
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−

√
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2

4B2
1

− B3
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2
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2B1
+

√
B2

2

4B2
1

− B3

B1

) 1
2

η2 =

(
B2

2B1
−

√
B2

2

4B2
1
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) 1
2
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(
B2

2B1
+

√
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4B2
1
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) 1
2

η3 =

(
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2B1
−

√
B2

2

4B2
1

− B3
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) 1
2
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2B1
+

√
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2

4B2
1

− B3
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2

η4 =

(
B2

2B1
−

√
B2

2

4B2
1

− B3

B1

) 1
2

or η4 =

(
B2

2B1
+

√
B2

2

4B2
1

− B3
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) 1
2

(4.1)

5. RESULTS AND DISCUSSIONS

For the purpose of illustration, we adopt the beam parameters and material properties defined
in Eftekhar et al. [32]. These properties are Length L = 50 m. The modulus of elasticity E
is 3.34 × 1010 N/m2, moment of inertia I = 1.042 × 104m4, Density ρ = 2400Kg/m3, the
shear modulus is 1.34× 1010N/m2 and cross-sectional area of 2m2.

FIGURE 1. The transverse displacement response a uniform Timoshenko
beam resting on variable elastic foundation and subjected to variable mag-
nitude moving load for various values of foundation modulus K.
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Figure 1 display the transverse displacement response of a uniform Timoshenko beam rest-
ing on variable elastic foundation when subjected to harmonic variable magnitude loads trav-
eling with a variable velocity. It is deduced from this figure that for fixed values of other vital
parameters, the transverse deflection of a uniform Timoshenko beam resting on variable elastic
foundation and traversed by fast traveling masses decreases as the values of foundation reaction
subgrade K0 increases.

In figure 2 the deflection profile of a uniform Timoshenko beam resting on variable elastic
foundation and subjected to variable magnitude moving load traveling at non uniform velocity
is displayed for various load positions. It is clearly shown that the larger the value of the load
positions the lower the deflection of the elastic beam.

FIGURE 2. The deflection profile of a uniform Timoshenko beam resting on
variable elastic foundation and subjected to variable magnitude moving load
for various values of the load positions x.

The displacement response of a uniform Timoshenko beam resting on variable elastic foun-
dation and under the actions of a variable magnitude moving load traveling at non uniform
velocity is shown in figure 3. It is observed from this figure that higher values of the load
longitudinal frequency β produce more stabilizing effects on the elastic beam.

Figure 4 depicts the deflection profile of the uniform Timoshenko beam resting on elastic
foundation and subjected to fast traveling variable magnitude moving load. It is shown from
the figure that for fixed value of foundation reaction K0 and other structural parameters, the
deflection of the beam reduces as the values of the circular frequency ω increases.
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FIGURE 3. The displacement response of a uniform Timoshenko beam resting
on variable elastic foundation and subjected to variable magnitude moving
load for various values of longitudinal frequency of the load.

FIGURE 4. The response amplitude of a uniform Timoshenko beam resting on
variable elastic foundation and under the actions of variable magnitude moving
load for various values of circular frequency ω.
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Figure 5 depicts the response amplitude of a uniform Timoshenko beam resting on vari-
able elastic foundation when subjected to harmonic variable magnitude loads travelling with a
variable velocity. It is clearly shown from the figure that as the values of the longitudinal am-
plitude of the oscillation of the travelling load increases, for fixed values of other parameters
the dynamic deflection of the beam increases.

FIGURE 5. The response amplitude of a uniform Timoshenko beam resting on
variable elastic foundation and under the actions of variable magnitude moving
load for various values of longitudinal amplitude of oscillation of the load γ.

In figure 6, the transverse displacement response of a Timoshenko beam under the actions
of harmonic magnitude load is shown. It is deduce from this figure that as the values of shear
modulus Gincreases, the response amplitude of the beam increases.

6. CONCLUDING REMARKS

The dynamic behaviour of a simply supported Timoshenko beams resting on variable elastic
foundation when carrying fast traveling concentrated loads of varying magnitudes has been in-
vestigated. The versatile analytical technique known as Galerkin’s method has been employed
in conjunction with integral transform method to obtain closed-form solution of this dynam-
ical beam-load problem. Both analytical and numerical results presented in this paper are in
perfect agreement with existing results. Results show that, as the values of foundation stiffness
K0 increases, the deflection profile of the uniform Timoshenko beam increases.
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FIGURE 6. The response amplitude of a uniform Timoshenko beam resting on
variable elastic foundation and under the actions of variable magnitude moving
load for various values of shear modulus G.
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