• Title/Summary/Keyword: bayesian analysis

Search Result 975, Processing Time 0.02 seconds

Bayesian 다중회귀분석을 이용한 저수량(Low flow) 지역 빈도분석 (Regional Low Flow Frequency Analysis Using Bayesian Multiple Regression)

  • 김상욱;이길성
    • 한국수자원학회논문집
    • /
    • 제41권3호
    • /
    • pp.325-340
    • /
    • 2008
  • 본 연구는 저수량 지역 빈도분석(regional low flow frequency analysis)을 수행하기 위하여 일반최소자승법(ordinary least squares method)을 이용한 Bayesian 다중회귀분석을 적용하였으며, 불확실성측면에서의 효과를 탐색하기 위하여 Bayesian 다중회귀분석에 의한 추정치와 t 분포를 이용하여 산정한 일반 다중회귀분석의 추정치의 신뢰구간을 비교분석하였다. 각 재현기간별 비교결과를 보면 t 분포를 이용하여 산정된 평균 추정치와 Bayesian 다중회귀분석에 의한 평균 추정치는 크게 다르지 않았다. 그러나 불확실성 측면에서 평가해볼 때 신뢰구간의 상한추정치와 하한추정치의 차이는 Bayesian 다중회귀분석을 사용한 경우가 기존 방법을 사용한 경우보다 훨씬 작은 것으로 나타났으며, 이로부터 저수량(low flow) 지역 빈도분석을 수행하는 경우 Bayesian 다중회귀분석이 일반 회귀분석보다 불확실성을 표현하는데 있어서 우수하다는 결과를 얻을 수 있었다. 또한 낙동강 유역에 2개의 미계측 유역을 선정하고 구축된 Bayesian 다중회귀모형을 적용하여 불확실성을 포함한 미계측 유역에서의 저수량(low flow)을 추정하였으며 이와 같은 방법이 미계측 유역에서의 저수(low flow) 특성을 나타내는 데 있어서 효과적일 수 있음을 입증하였다.

Bayesian MCMC를 이용한 저수량 점 빈도분석: I. 이론적 배경과 사전분포의 구축 (At-site Low Flow Frequency Analysis Using Bayesian MCMC: I. Theoretical Background and Construction of Prior Distribution)

  • 김상욱;이길성
    • 한국수자원학회논문집
    • /
    • 제41권1호
    • /
    • pp.35-47
    • /
    • 2008
  • 저수분석(low flow analysis)은 수자원공학에서 중요한 분야 중 하나이며, 특히 저수량 빈도분석(low flow frequency analysis)의 결과는 저수(貯水)용량의 설계, 물 수급계획, 오염원의 배치 및 관개와 생태계의 보존을 위한 수량과 수질의 관리에 중요하게 사용된다. 그러므로 본 연구에서는 저수량 빈도분석을 위한 점 빈도분석을 수행하였으며, 특히 빈도분석에 있어서의 불확실성을 탐색하기 위하여 Bayesian 방법을 적용하고 그 결과를 기존에 사용되던 불확실성 탐색방법과 비교하였다. 본 논문의Ⅰ편에서는 Bayesian 방법 중 사전분포(prior distribution)와 우도함수(likelihood function)의 복잡성에 상관없이 계산이 가능한 Bayesian MCMC(Bayesian Markov Chain Monte Carlo) 방법과 Metropolis-Hastings 알고리즘을 사용하기 위한 여러 과정의 이론적 배경과 Bayesian 방법에서 가장 중요한 요소인 사전분포를 구축하고 이를 비교 및 평가하였다. 고려된 사전분포는 자료에 기반하지 않은 사전분포와 자료에 기반한 사전분포로써 두 사전분포를 이용하여 Metropolis-Hastings 알고리즘을 수행하고 그 결과를 비교하여 저수량 빈도분석에 합리적인 사전분포를 선정하였다. 또한 알고리즘의 수행과정에서 필요한 제안분포(proposal distribution)를 적용하여 그에 따른 알고리즘의 효율성을 채택률(acceptance rate)을 산정하여 검증해 보았다. 사전분포의 분석 결과, 자료에 기반한 사전분포가 자료에 기반하지 않은 사전분포보다 정확성 및 불확실성의 표현에 있어서 우수한 결과를 제시하는 것을 확인할 수 있었고, 채택률을 이용한 알고리즘의 효용성 역시 기존 연구자들이 제시하였던 만족스러운 범위를 가지는 것을 알 수 있었다. 최종적으로 선정된 사전분포는 본 연구의 II편에서 Bayesian MCMC방법의 사전분포로 이용되었으며, 그 결과를 기존 불확실성의 추정방법의 하나인 2차 근사식을 이용한 최우추정(maximum likelihood estimation)방법의 결과와 비교하였다.

Bayesian methods in clinical trials with applications to medical devices

  • Campbell, Gregory
    • Communications for Statistical Applications and Methods
    • /
    • 제24권6호
    • /
    • pp.561-581
    • /
    • 2017
  • Bayesian statistics can play a key role in the design and analysis of clinical trials and this has been demonstrated for medical device trials. By 1995 Bayesian statistics had been well developed and the revolution in computing powers and Markov chain Monte Carlo development made calculation of posterior distributions within computational reach. The Food and Drug Administration (FDA) initiative of Bayesian statistics in medical device clinical trials, which began almost 20 years ago, is reviewed in detail along with some of the key decisions that were made along the way. Both Bayesian hierarchical modeling using data from previous studies and Bayesian adaptive designs, usually with a non-informative prior, are discussed. The leveraging of prior study data has been accomplished through Bayesian hierarchical modeling. An enormous advantage of Bayesian adaptive designs is achieved when it is accompanied by modeling of the primary endpoint to produce the predictive posterior distribution. Simulations are crucial to providing the operating characteristics of the Bayesian design, especially for a complex adaptive design. The 2010 FDA Bayesian guidance for medical device trials addressed both approaches as well as exchangeability, Type I error, and sample size. Treatment response adaptive randomization using the famous extracorporeal membrane oxygenation example is discussed. An interesting real example of a Bayesian analysis using a failed trial with an interesting subgroup as prior information is presented. The implications of the likelihood principle are considered. A recent exciting area using Bayesian hierarchical modeling has been the pediatric extrapolation using adult data in clinical trials. Historical control information from previous trials is an underused area that lends itself easily to Bayesian methods. The future including recent trends, decision theoretic trials, Bayesian benefit-risk, virtual patients, and the appalling lack of penetration of Bayesian clinical trials in the medical literature are discussed.

지형특성을 활용한 계층적 Bayesian Spatial 지역빈도해석 (Development of Hierarchical Bayesian Spatial Regional Frequency Analysis Model Considering Geographical Characteristics)

  • 김진영;권현한;임정열
    • 한국수자원학회논문집
    • /
    • 제47권5호
    • /
    • pp.469-482
    • /
    • 2014
  • 본 연구에서는 지역특성(위도, 경도, 고도)과 기후학적 특성(연최대강우량)을 계층적 Bayesian 모형안에서 연계하여 공간적 분석이 가능한 지역빈도해석 모형을 개발하였다. 기존 지역빈도해석은 강수지점의 지리적/지형적 특성을 반영한 해석이 어려운 단점이 있으며, 지점을 기준으로 해석된 확률강수량을 유역면적강우량으로 변환 시 불확실성이 큰 단점이 있다. 이에 본 연구에서는 계층적 Bayesian 기법을 이용하여 지역특성 및 기후학적 특성이 고려된 Gumbel 확률분포형의 매개변수를 추정하였으며, 이들 매개변수들을 공간적으로 보간하여 한강유역내 모든 지점에 대해서 확률강수량을 추정할 수 있도록 하였다. 결과적으로 기존 L-모멘트 방법과 유사한 결과를 확인할 수 있었으며 확률강수량의 불확실성 정량화와 더불어 지리적/지형적 영향을 고려한 해석이 가능하였다.

Bayesian MCMC를 이용한 저수량 점 빈도분석: II. 적용과 비교분석 (At-site Low Flow Frequency Analysis Using Bayesian MCMC: II. Application and Comparative Studies)

  • 김상욱;이길성
    • 한국수자원학회논문집
    • /
    • 제41권1호
    • /
    • pp.49-63
    • /
    • 2008
  • 본 연구에서는 Bayesian MCMC 방법과 2차 근사식을 이용한 최우추정(Maximum Likelihood Estimation, MLE)방법 방법을 이용하여 낙동강 유역의 본류지점인 낙동, 왜관, 고령교, 진동지점에 대한 점 빈도분석을 수행하고 그 결과로써 불확실성을 포함한 빈도곡선을 작성하였다. 통계적 실험을 통한 두 가지 추정방법의 분석을 위하여 먼저 자료의 길이가 100인 8개의 합성 유량자료 셋을 생성하여 비교 연구를 수행하였으며, 이를 자료길이 36인 실측 유량 자료의 추정결과와 비교하였다. Bayesian MCMC 방법에 의한 평균값과 2차 근사식을 이용한 취우추정방법에 의한 모드에서의 2모수 Weibull 분포의 모수 추정값은 비슷한 결과를 보였으나, 불확실성을 나타내는 하한값과 상한값의 차이는 Bayesian MCMC 방법이 2차 근사식을 이용한 취우추정방법보다 불확실성을 감소시켜 나타내는 것을 알 수 있었다. 또한 실측 유량자료를 이용한 결과, 2차 근사식을 이용한 취우추정방법의 경우 자료의 길이가 감소됨에 따라 불확실성의 범위가 합성유량자료를 사용한 경우에 비해 상대적으로 증가되지만, Bayesian MCMC 방법의 경우에는 자료의 길이에 대한 영향이 거의 없다는 결론을 얻을 수 있었다. 그러므로 저수량 빈도분석을 수행하기 위해 충분한 자료를 확보할 수 없는 국내의 상황을 감안할 때, 위와 같은 결론으로부터 Bayesian MCMC 방법이 불확실성을 표현하는데 있어서 2차 근사식을 이용한 최우추정방법에 비해 합리적일 수 있다는 결론을 얻을 수 있었다.

확률강우량의 공간분포추정에 있어서 Bayesian 기법을 이용한 공간통계모델의 매개변수 불확실성 해석 (Uncertainty Analysis of Parameters of Spatial Statistical Model Using Bayesian Method for Estimating Spatial Distribution of Probability Rainfall)

  • 서영민;박기범;김성원
    • 한국환경과학회지
    • /
    • 제20권12호
    • /
    • pp.1541-1551
    • /
    • 2011
  • This study applied the Bayesian method for the quantification of the parameter uncertainty of spatial linear mixed model in the estimation of the spatial distribution of probability rainfall. In the application of Bayesian method, the prior sensitivity analysis was implemented by using the priors normally selected in the existing studies which applied the Bayesian method for the puppose of assessing the influence which the selection of the priors of model parameters had on posteriors. As a result, the posteriors of parameters were differently estimated which priors were selected, and then in the case of the prior combination, F-S-E, the sizes of uncertainty intervals were minimum and the modes, means and medians of the posteriors were similar to the estimates using the existing classical methods. From the comparitive analysis between Bayesian and plug-in spatial predictions, we could find that the uncertainty of plug-in prediction could be slightly underestimated than that of Bayesian prediction.

베이지안 통계 추론 (On the Bayesian Statistical Inference)

  • 이호석
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2007년도 한국컴퓨터종합학술대회논문집 Vol.34 No.1 (C)
    • /
    • pp.263-266
    • /
    • 2007
  • 본 논문은 베이지안 통계 추론에 대하여 논의한다. 논문은 베이지안 추론, Markov Chain과 Monte Carlo 적분, MCMC(Markov Chain Monte Carlo) 기법, Metropolis-Hastings 알고리즘, Gibbs 샘플링, Maximum Likelihood Estimation, EM 알고리즘, 상실된 데이터 보완 기법, BMA(Bayesian Model Averaging) 순서로 논의를 진행한다. 이러한 통계적 기법들은 대용량의 데이터를 처리하는 생물학, 의학, 생명 공학, 과학과 공학, 그리고 일반 데이터 조사와 처리 등에 사용되고 있으며, 최적의 추론 결과를 이끌어 내는데 중요한 방법을 제공하고 있다. 그리고 마지막으로 PC(Principal Component) 분석 기법에 대하여 논의한다. PC 분석 기법도 데이터 분석과 연구에 많이 활용된다.

  • PDF

Bayesian analysis of longitudinal traits in the Korea Association Resource (KARE) cohort

  • Chung, Wonil;Hwang, Hyunji;Park, Taesung
    • Genomics & Informatics
    • /
    • 제20권2호
    • /
    • pp.16.1-16.12
    • /
    • 2022
  • Various methodologies for the genetic analysis of longitudinal data have been proposed and applied to data from large-scale genome-wide association studies (GWAS) to identify single nucleotide polymorphisms (SNPs) associated with traits of interest and to detect SNP-time interactions. We recently proposed a grid-based Bayesian mixed model for longitudinal genetic data and showed that our Bayesian method increased the statistical power compared to the corresponding univariate method and well detected SNP-time interactions. In this paper, we further analyze longitudinal obesity-related traits such as body mass index, hip circumference, waist circumference, and waist-hip ratio from Korea Association Resource data to evaluate the proposed Bayesian method. We first conducted GWAS analyses of cross-sectional traits and combined the results of GWAS analyses through a meta-analysis based on a trajectory model and a random-effects model. We then applied our Bayesian method to a subset of SNPs selected by meta-analysis to further discover SNPs associated with traits of interest and SNP-time interactions. The proposed Bayesian method identified several novel SNPs associated with longitudinal obesity-related traits, and almost 25% of the identified SNPs had significant p-values for SNP-time interactions.

Bayesian pooling for contingency tables from small areas

  • Jo, Aejung;Kim, Dal Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • 제27권6호
    • /
    • pp.1621-1629
    • /
    • 2016
  • This paper studies Bayesian pooling for analysis of categorical data from small areas. Many surveys consist of categorical data collected on a contingency table in each area. Statistical inference for small areas requires considerable care because the subpopulation sample sizes are usually very small. Typically we use the hierarchical Bayesian model for pooling subpopulation data. However, the customary hierarchical Bayesian models may specify more exchangeability than warranted. We, therefore, investigate the effects of pooling in hierarchical Bayesian modeling for the contingency table from small areas. In specific, this paper focuses on the methods of direct or indirect pooling of categorical data collected on a contingency table in each area through Dirichlet priors. We compare the pooling effects of hierarchical Bayesian models by fitting the simulated data. The analysis is carried out using Markov chain Monte Carlo methods.

베이지안 회귀분석을 이용한 수위-유량 관계곡선의 불확실성 분석 (Identification of Uncertainty in Fitting Rating Curve with Bayesian Regression)

  • 김상욱;이길성
    • 한국수자원학회논문집
    • /
    • 제41권9호
    • /
    • pp.943-958
    • /
    • 2008
  • 본 연구는 수위-유량 관계곡선식의 매개변수 추정을 수행하기 위하여 Bayesian 회귀분석을 적용하였다. 또한 불확실성측면에서의 효과를 탐색하기 위하여 Bayesian 회귀분석에 의한 추정치와 t 분포를 이용하여 산정한 일반 최소자승법(ordinary least square, OLS)에 의한 회귀분석의 추정치를 각각 산정하여 산정결과의 신뢰구간을 비교분석 하였다. 등분산케이스의 통계적 실험결과 t 분포를 이용하여 산정된 평균 추정치와 Bayesian 회귀분석에 의한 평균 추정치는 크게 다르지 않았으나, 비등분산 케이스의 경우에는 Bayesian 회귀분석이 참값에 가까운 추정치를 산정함을 알 수 있었다. 또한 불확실성 측면에서 평가해 볼 때 신뢰구간의 상한추정치와 하한추정치의 차이는 Bayesian 회귀분석을 사용한 경우가 기존 방법을 사용한 경우보다 작은 것으로 나타났으며, 이로부터 수위-유량 관계곡선식의 매개변수를 추정하는 경우 Bayesian 회귀분석이 일반 회귀분석보다 불확실성을 표현하는데 있어서 우수하다는 결과를 얻을 수 있었다. 적용된 두 가지의 추정방법은 비등분산성을 고려한 통계적 실험을 통하여 장점과 단점이 비교되었으며, 안양천 유역의 5개 지점으로부터 얻어진 유량측정성과를 이용하여 적용성을 알아보았다. 현장 적용결과는 참값을 알지 못하므로 정량적 우수성은 평가할 수 없었으나, 기존에 사용되는 불확실성 산정방법보다 Bayesian 회귀 분석 불확실성은 감소시켜 나타냄을 알 수 있었다.