• Title/Summary/Keyword: battery recycling

Search Result 159, Processing Time 0.026 seconds

Comparison of Li(I) Precipitation from the Leaching Solution of the Dust from Spent Lithium-ion Batteries Treatment between Sodium Carbonate and Ammonium Carbonate (폐리튬이온전지 처리시 발생한 더스트 침출용액으로부터 Na2CO3와 (NH4)2CO3에 의한 리튬(I) 석출 비교)

  • Nguyen, Thi Thu Huong;Lee, Man Seung
    • Resources Recycling
    • /
    • v.31 no.5
    • /
    • pp.34-41
    • /
    • 2022
  • Smelting reduction of spent lithium-ion batteries results in metallic alloys, slag, and dust containing Li(I). Precipitation of Li2CO3 was performed using the synthetic leachate of the dust. Herein, the effects of the precipitant and addition of non-aqueous solvents on the precipitation of Li(I) were investigated. Na2CO3 was a more effective precipitating agent than (NH4)2CO3 owing to the hydrolysis reaction of dissolved ammonium and carbonate. The addition of acetone or ethanol improved the Li(I) precipitation percentage for both the precipitants. When using (NH4)2CO3, the Li(I) precipitation percentage increased at a solution pH of 12. Under the same conditions, the Li(I) precipitation percentage using Na2CO3 was much higher than that using (NH4)2CO3.

Synthesis of Various Biomass-derived Carbons and Their Applications as Anode Materials for Lithium Ion Batteries (다양한 바이오매스 기반의 탄소 제조 및 리튬이온전지 음극활물질로의 응용)

  • Chan-Gyo Kim;Suk Jekal;Ha-Yeong Kim;Jiwon Kim;Yeon-Ryong Chu;Hyung Sub Sim;Chang-Min Yoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.31 no.3
    • /
    • pp.27-34
    • /
    • 2023
  • In this study, various plant-based biomass are recycled into carbon materials to employ as anode materials for lithium-ion batteries. Firstly, various biomass of rice husk, chestnut, tea bag, and coffee ground are collected, washed, and ground. The carbonization process is followed under a nitrogen atmosphere at 850℃. The morphological and chemical properties of materials are investigated using FE-SEM, EDS, and FT-IR to compare the characteristic differences between various biomass. It is noticeable that biomass-derived carbon materials vary in shape and degree of carbonization depending on their precursor materials. These materials are applied as anode materials to measure the electrochemical performance. The specific capacities of rice husk-, chetnut-, tea bag-, and coffee ground-derived carbon materials are evaluated as 65.8, 80.2, 90.6, and 104.7 mAh g-1 at 0.2C. Notably, coffee ground-based carbon exhibited the highest specific capacity owing to the difference in elemental composition and the degree of carbonization. Conclusively, this study suggests the possibility of utilizing as energy storage devices by employing various plant-based biomass into active materials for anodes.

Analysis of Changes in Trade Structure of the Raw Materials of Rare Metals in Korea (국내 희유금속 원재료 교역구조 변화 분석 연구)

  • Hwa Suk Lee;Yu Jeong Kim
    • Resources Recycling
    • /
    • v.32 no.6
    • /
    • pp.67-78
    • /
    • 2023
  • The rare metals used as raw materials in high-tech industries undergo changes in demand structures and supply chains following domestic industrial structural shifts and technological advancements, exhibiting high price volatility. Therefore, it is necessary to periodically analyze changes in the demand structures of rare metals. Since domestic demand for most rare metals relies on imports in Korea, the changes in domestic demand for rare metals can be identified by analyzing changes in their trade structure. In the present study, we analyze the changes in trade volume, trade growth rate, trade rankings, and trading countries from 2000 to 2022 for 35 rare metals, categorized into five types-ores, metals, alloys, compounds, and scrap. The trade of the raw materials of rare metals in Korea has generally increased since the 2000s, except for a significant decline in 2009 and 2016. The total trade volume, encompassing both exports and imports, has increased by approximately tenfold in 2022 compared to 2001. Until the mid-2010s, the trade of the raw materials of rare metals was primarily focused on those used in steel-manufacturing such as silicon, nickel, chrome, molybdenum, manganese, and others. However, after that period, there has been an increase in the trade of platinum group metals like palladium, rhodium, platinum, and the raw materials of rare metals for secondary battery-manufacturing such as lithium and cobalt. Particularly in 2022, lithium has become the largest share in trade of the raw materials of rare metals in Korea, due to the price surge and increase in demand.

Fabrication of TiO2 Coated Si Nano Particle using Silicon Sawing Sludge (실리콘 절삭 슬러지를 이용한 TiO2 코팅 나노 실리콘 입자의 제조)

  • Seo, Dong Hyeok;Yim, Hyeon Min;Na, Ho Yoon;Kim, Won Jin;Kim, Ryun Na;Kim, Woo-Byoung
    • Journal of Powder Materials
    • /
    • v.28 no.5
    • /
    • pp.423-428
    • /
    • 2021
  • Here, we report the development of a new and low-cost core-shell structure for lithium-ion battery anodes using silicon waste sludge and the Ti-ion complex. X-ray diffraction (XRD) confirmed the raw waste silicon sludge powder to be pure silicon without other metal impurities and the particle size distribution is measured to be from 200 nm to 3 ㎛ by dynamic light scattering (DLS). As a result of pulverization by a planetary mill, the size of the single crystal according to the Scherrer formula is calculated to be 12.1 nm, but the average particle size of the agglomerate is measured to be 123.6 nm. A Si/TiO2 core-shell structure is formed using simple Ti complex ions, and the ratio of TiO2 peaks increased with an increase in the amount of Ti ions. Transmission electron microscopy (TEM) observations revealed that TiO2 coating on Si nanoparticles results in a Si-TiO2 core-shell structure. This result is expected to improve the stability and cycle of lithium-ion batteries as anodes.

Lead Pollution and Lead Poisoning among Children in China

  • Zheng, Yuxin
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2003.06a
    • /
    • pp.24-25
    • /
    • 2003
  • Lead is ubiquitous in the human environment as a result of industrialization. China's rapid industrialization and traffic growth have increased the potential for lead emissions. Lead poisoning in children is one of the most common public health problems today, and it is entirely preventable. Children are more vulnerable to lead pollution and lead in their bodies can affect their nervous, circulatory, and digestive systems. Children are exposed to lead from different sources (such as paint, gasoline, and solder) and through different pathways (such as air, food, water, dust, and soil). Although all children are exposed to some lead from food, air, dust, and soil, some children are exposed to high dose sources of lead. Significant sources of lead for China's children include industrial emissions (often close to housing and schools), leaded gasoline, and occupational exposure that occurs when parents wear lead-contaminated clothing home from work, burning of coal for home heat and cooking, contaminated food, and some traditional medicines. To assess the blood lead level in children in China, a large-scale study was conducted in 19 cities among 9 provinces during 1997 to 2000. There were 6502 children, aged 3-5 years, were recruited in the study The result indicates that the mean blood lead level was 8.83ug/dl 3-5 year old living in city area. The mean blood lead level of boys was higher than that of girls (9.1l ug/dl vs 8.73ug/dl). Almost 30 percent childrens blood lead level exceeded 10ug/dl. The average blood lead level was higher than that of in 1985 (8.83ug/dl vs 8.lug/dl). An epidemiological study was carried on the children living around the cottage industries recycling the lead from battery. Nine hundreds fifty nine children, aged 5-12 years, living in lead polluted villages where the lead smelters located near the residential area and 207 control children live in unpolluted area were recruited in the study. The lead levels in air, soil, drinking water and crops were measured. The blood lead and ZnPP level were tested for all subjects. The results show that the local environment was polluted. The lead levels both in the air and crops were much higher than that of in control area. In the polluted area, the average blood level was 49.6ug/dl (rang 19.5-89.3ug/dl). Whereas, in the unpolluted area, the average blood level was 12.4ug/dl (rang 4.6-24.8ug/dl). This study indicates that in some countryside area, some cottage industries induce seriously lead pollution and cause children health problem. For the introducing of unleaded gasoline in some large cities, such as Beijing and Shanghai, the blood lead level showed a declined trend since 1997. By 2000, the use of leaded gasoline in motor vehicles has been prohibited in China. The most recent data available show that levels of lead in blood among children in Shanghai decreased from 8.3ug/dl in 1997 to 7.6ug/dl in 1999. The prevalence rate of children lead poisoning (blood lead >10ug/dl) was also decreased from 37.8% to 24.8%. In children living in downtown area, the blood lead level reduced dramatically. To explore the relationship between gene polymorphisms and individual susceptibility of lead poisoning, a molecular epidemiological study was conducted among children living in lead polluted environment. The result showed that the subjects with ALAD2 allele has higher ZPP level, and the subjects with VDR B allele has larger head circumference than only with b allele. In the present study, we demonstrated that ALAD genotypes modify lead effects on heme metabolism and VDR gene variants influence the skull development in highly exposed children. The polymorphism of ALAD and VDR genes might be the molecular inherited factor modifying the susceptibility of lead poisoning. Recently, Chinese government pays more attention to lead pollution and lead poisoning in children problem. The leaded gasoline was prohibited used in motor vehicles since 2000. The government has decided to have a clampdown on the high-polluted lead smelters for recycling the lead from battery in countryside. It is hopeful that the risk of lead poisoning in children will be decreased in the further

  • PDF

Study on the Manufacture of High-purity Vanadium Pentoxide for VRFB Using Chelating Agents (킬레이트제를 활용한 VRFB용 고순도 오산화바나듐 제조 연구)

  • Kim, Sun Kyung;Kwon, Sukcheol;Kim, Hee Seo;Suh, Yong Jae;Yoo, Jeong Hyun;Chang, Hankwon;Jeon, Ho-SeoK;Park, In-Su
    • Resources Recycling
    • /
    • v.31 no.2
    • /
    • pp.20-32
    • /
    • 2022
  • This study implemented a chelating agent (Ethylenediaminetetraacetic acid, EDTA) in purification to obtain high-purity vanadium pentoxide (V2O5) for use in VRFB (Vanadium Redox Flow Battery). V2O5 (powder) was produced through the precipitation recovery of ammonium metavanadate (NH4VO3) from a vanadium solution, which was prepared using a low-purity vanadium raw material. The initial purity of the powder was estimated to be 99.7%. However, the use of a chelating agent improved its purity up to 99.9% or higher. It was conjectured that the added chelating agent reacted with the impurity ions to form a complex, stabilizing them. This improved the selectivity for vanadium in the recovery process. However, the prepared V2O5 powder exhibited higher contents of K, Mn, Fe, Na, and Al than those in the standard counterparts, thus necessitating additional research on its impurity separation. Furthermore, the vanadium electrolyte was prepared using the high-purity V2O5 powder in a newly developed direct electrolytic process. Its analytical properties were compared with those of commercial electrolytes. Owing to the high concentration of the K, Ca, Na, Al, Mg, and Si impurities in the produced vanadium electrolyte, the purity was analyzed to be 99.97%, lower than those (99.98%) of its commercial counterparts. Thus, further research on optimizing the high-purity V2O5 powder and electrolyte manufacturing processes may yield a process capable of commercialization.

Electrochemical Properties and Adsorption Performance of Carbon Materials Derived from Coffee Grounds (커피찌꺼기로부터 얻어진 탄소 소재의 전기화학적 성질 및 흡착 성능)

  • Jin Ju Yoo;Nayeon Ko;Su Hyun Oh;Jeongyeon Oh;Mijung Kim;Jaeeun Lee;Taeshik Earmme;Joonwon Bae
    • Applied Chemistry for Engineering
    • /
    • v.34 no.5
    • /
    • pp.529-533
    • /
    • 2023
  • The fundamental electrochemical properties and adsorption capabilities of the carbonized product derived from coffee grounds, a prevalent form of lignocellulose abundantly generated in our daily lives, have been extensively investigated. The structure and morphology of the resultant carbonized product, obtained through a carbonization process conducted at a relatively low temperature of 600 ℃, were meticulously examined using a scanning electron microscope. Raman spectroscopy measurements yielded a relative crystallinity (D/G ratio) of the carbon product of 0.64. Electrical measurements revealed a linear ohmic relationship within the carbonized product. Furthermore, the viability of utilizing this carbonized material as an anode in lithium-ion batteries was evaluated through half-cell charge/discharge experiments, demonstrating an initial specific capacity of 520 mAh/g. Additionally, the adsorption performance of the carbon material towards a representative dye molecule was assessed via UV spectroscopy analyses. Supplementary experiments corroborated the material's ability to adsorb a distinct model molecule characterized by differing surface polarity, achieved through surface modification. This article presents pivotal findings that hold substantial implications for forthcoming research endeavors centered around the recycling of lignocellulose waste.

A Study of Recycling Lithium-ion Battery Graphite by Eco-friendly Citric Acid Treatment Method (친환경 구연산처리를 통한 폐흑연 재활용 연구)

  • Dong-kyu Son;Won Jin Park;Jun Young Kim;Ji Hui Yun;Jung Eun Hyun
    • Korean Chemical Engineering Research
    • /
    • v.62 no.3
    • /
    • pp.246-252
    • /
    • 2024
  • In this study, impurities such as Li and F were removed from waste graphite through citric acid treatment, and changes in structural properties, capacity, and cycle stability of regenerated graphite were observed accordingly. Regenerated graphite pretreated in a nitrogen atmosphere was treated with citric acid, and its structure and characteristics were analyzed through SEM (Scanning Electron Microscope), FT-IR (Fourier Transform Infrared spectroscopy), XRD (X-ray Diffraction), and XPS (X-ray Photoelectron Spectroscopy). Waste graphite that was not treated with acid had a rapid decrease in capacity before 70 cycles, but graphite that had been treated with citric acid showed a capacity of 302.9 mAh g-1 and a capacity retention rate of 93.1% at 100 cycles. In addition, despite changes in current density in rate performance, samples treated with citric acid showed 340.2 mAh g-1 performance at 1.0C without change in capacity. As a result, it was confirmed that citric acid treatment not only effectively removed impurities and showed a high capacity retention rate, but also showed stability even at high current densities.

A Synthesis of LiCoO2 using the CoSO4 Recovered from Cathode Material Scrap and its Electrochemical Properties (폐 리튬 이차전지로부터 회수된 황산코발트 제조 및 이를 이용해 합성된 산화리튬코발트 양극활물질의 전기화학적 특성)

  • Kim, Mi-So;Ha, Jong-Keun;Park, Se-Bin;Ahn, Jou-Hyeon;Choi, Im-Sic;Cho, Kwon-Koo
    • Journal of the Korean Electrochemical Society
    • /
    • v.17 no.2
    • /
    • pp.111-118
    • /
    • 2014
  • The electrochemical properties using the cells assembled with the synthesized $LiCoO_2$(LCO) were evaluated in this study. The LCO was synthesized from high-purity cobalt sulfate($CoSO_4$) which is recovered from the cathode scrap in the wastes lithium ion secondary battery(LIB). The leaching process for dissolving the metallic elements from the LCO scrap was controlled by the quantities of the sulfuric acid and hydrogen peroxide. The metal precipitation to remove the impurities was controlled by the pH value using the caustic soda. And also, D2EHPA and $CYANEX^{(R)}272$ were used in the solvent extraction process in order to remove the impurities again. The high-purity $CoSO_4$ solution was recovered by the processes mentioned above. We made the 6 wt.% $CoSO_4$ solution mixed with distilled water. And the 6 wt.% $CoSO_4$ solution was mixed with oxalic acid by the stirring method and dried in oven. $LiCoO_2$ as a cathode material for LIB was formed by the calcination after the drying and synthesis with the $Li_2CO_3$ powder. We assembled the cells using the $LiCoO_2$ powders and evaluated the electrochemical properties. And then, we confirmed possibility of the recyclability about the cathode materials for LIBs.