DOI QR코드

DOI QR Code

Comparison of Li(I) Precipitation from the Leaching Solution of the Dust from Spent Lithium-ion Batteries Treatment between Sodium Carbonate and Ammonium Carbonate

폐리튬이온전지 처리시 발생한 더스트 침출용액으로부터 Na2CO3와 (NH4)2CO3에 의한 리튬(I) 석출 비교

  • Nguyen, Thi Thu Huong (Department of Advanced Materials Science & Engineering, Institute of Rare Metal, Mokpo National University) ;
  • Lee, Man Seung (Department of Advanced Materials Science & Engineering, Institute of Rare Metal, Mokpo National University)
  • ;
  • 이만승 (목포대학교 공과대학 첨단재료공학과)
  • Received : 2022.08.23
  • Accepted : 2022.10.05
  • Published : 2022.10.31

Abstract

Smelting reduction of spent lithium-ion batteries results in metallic alloys, slag, and dust containing Li(I). Precipitation of Li2CO3 was performed using the synthetic leachate of the dust. Herein, the effects of the precipitant and addition of non-aqueous solvents on the precipitation of Li(I) were investigated. Na2CO3 was a more effective precipitating agent than (NH4)2CO3 owing to the hydrolysis reaction of dissolved ammonium and carbonate. The addition of acetone or ethanol improved the Li(I) precipitation percentage for both the precipitants. When using (NH4)2CO3, the Li(I) precipitation percentage increased at a solution pH of 12. Under the same conditions, the Li(I) precipitation percentage using Na2CO3 was much higher than that using (NH4)2CO3.

폐리튬이온전지를 고온에서 용융환원하면 금속혼합물, 슬라그와 리튬(I)을 함유한 분진이 발생한다. 분진의 침출 합성액을 이용하여 Li2CO3 석출실험을 수행했다. 석출제의 종류와 비수용액의 첨가가 석출에 미치는 영향을 조사했다. (NH4)2CO3에서 해리된 암모늄과 탄산이온의 수화반응으로 인해 Na2CO3가 석출제로서 효과가 우수했다. 또한 용액에 아세톤이나 에탄올을 첨가하면 리튬(I)의 석출률이 증가했다. 특히 (NH4)2CO3을 석출제로 첨가한 조건에서 용액의 pH가 12까지 증가함에 따라 리튬(I)의 석출률도 증가했다. 동일한 석출조건에서 Na2CO3에 의한 리튬(I)의 석출률이 (NH4)2CO3보다 더 높았다.

Keywords

Acknowledgement

This work was supported by the Technology Innovation Program (Development of Material Component Technology) (Project number: 20011183) funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea).

References

  1. Swain, B., 2017 : Recovery and recycling of lithium: A review. Separation and Purification Technology, 172, pp.388-403. https://doi.org/10.1016/j.seppur.2016.08.031
  2. Zhang, P., Yokoyama, T., Itabashi, O., et al., 1998 : Hydrometallurgical process for recovery of metal values from spent lithium-ion secondary batteries. Hydrometallurgy, 47(2-3), pp.259-271. https://doi.org/10.1016/S0304-386X(97)00050-9
  3. Joo, S.H., Shin, D.J., Oh, C.H., et al., 2015 : Selective extraction of nickel from cobalt, manganese and lithium in pretreated leach liquors of ternary cathode material of spent lithium-ion batteries using synergism caused by Versatic 10 acid and LIX 84-I, Hydrometallurgy, 159, pp.65-74.
  4. Sonoc, A., Jeswiet, J., Soo, V. K., 2015: Opportunities to Improve Recycling of Automotive Lithium Ion Batteries, Procedia CIRP, 29, pp.752-757. https://doi.org/10.1016/j.procir.2015.02.039
  5. Nguyen, T.T.H., Tran, T.T., Lee, M.S., 2022. A Modified Process for the Separation of Fe(III) and Cu(II) from the Sulfuric Acid Leaching Solution of Metallic Alloys of Reduction Smelted Spent Lithium-ion Batteries, Journal of The Korean Institute of Resources Recycling, 31(1), pp.12-20. https://doi.org/10.7844/kirr.2022.31.1.12
  6. Tran, T.T., Moon, H.S., Lee, M.S., 2021 : Co, Ni, Cu, Fe, and Mn integrated recovery process via sulphuric acid leaching from spent lithium-ion batteries smelted reduction metallic alloys, Mineral Processing and Extractive Metallurgy Review, 43(8), pp.954-968. https://doi.org/10.1080/08827508.2021.1979541
  7. Tran, T.T, Sohn, S.H., Lee, M.S., 2022 : Recovery of High-Purity Lithium Compounds from the Dust of the Smelting Reduction Process for Spent Lithium-Ion Batteries, Korean Journal of Metals and Materials, 60(4), pp.1-10. https://doi.org/10.3365/KJMM.2022.60.1.1
  8. James, G., 2005 : Lange's Handbook of Chemistry, 16th Edition, McGraw-Hill Education, New York, pp.1322-1323.
  9. Cai, W., Chen, R., Yang, Y., et al., 2018 : Removal of SO42- from Li2CO3 by Recrystallization in Na2CO3 Solution, Crystals, 8(1), pp.19. https://doi.org/10.3390/cryst8010019
  10. De Vasconcellos, M. E., da Rocha, S. M. R., Pedreira, W. R., et al., 2008 : Solubility behavior of rare earths with ammonium carbonate and ammonium carbonate plus ammonium hydroxide: Precipitation of their peroxicarbonates, Journal of Alloys and Compounds, 451(1-2), pp.426-428. https://doi.org/10.1016/j.jallcom.2007.04.163
  11. Aghaie, M., Ghafoorian, S., Broojeni, B. Sh., et al., 2009 : The effect of dielectric constant and ionic strength on the solubility of lithium carbonate at 25.0°C in thermodynamic view, Journal of Physical and Theoretical Chemistry, 5(4), pp.47-52.
  12. Mohsen-Nia, M., Amiri, H., & Jazi, B., 2010 : Dielectric Constants of Water, Methanol, Ethanol, Butanol and Acetone: Measurement and Computational Study, Journal of Solution Chemistry, 39(5), pp.701-708. https://doi.org/10.1007/s10953-010-9538-5
  13. Grubb, H. M., Chittum, J. F., & Hunt, H., 1936 : Liquid Ammonia as a Solvent. VI. The Dielectric Constant of Liquid Ammonia, Journal of the American Chemical Society, 58(5), pp.776-776. https://doi.org/10.1021/ja01296a026
  14. Fresneau, A., Danger, G., Rimola, A., et al., 2014 : Trapping in water - an important prerequisite for complex reactivity in astrophysical ices: the case of acetone (CH3)2C = O and ammonia NH3, Monthly Notices of the Royal Astronomical Society, 443(4), pp.2991-3000. https://doi.org/10.1093/mnras/stu1353