DOI QR코드

DOI QR Code

A Study of Recycling Lithium-ion Battery Graphite by Eco-friendly Citric Acid Treatment Method

친환경 구연산처리를 통한 폐흑연 재활용 연구

  • Dong-kyu Son (Korea Automotive Technology Institute (KATECH)) ;
  • Won Jin Park (Korea Automotive Technology Institute (KATECH)) ;
  • Jun Young Kim (Korea Automotive Technology Institute (KATECH)) ;
  • Ji Hui Yun (Korea Automotive Technology Institute (KATECH)) ;
  • Jung Eun Hyun (Korea Automotive Technology Institute (KATECH))
  • 손동규 (한국자동차연구원) ;
  • 박원진 (한국자동차연구원) ;
  • 김준영 (한국자동차연구원) ;
  • 윤지희 (한국자동차연구원) ;
  • 현정은 (한국자동차연구원)
  • Received : 2024.01.17
  • Accepted : 2024.06.26
  • Published : 2024.08.01

Abstract

In this study, impurities such as Li and F were removed from waste graphite through citric acid treatment, and changes in structural properties, capacity, and cycle stability of regenerated graphite were observed accordingly. Regenerated graphite pretreated in a nitrogen atmosphere was treated with citric acid, and its structure and characteristics were analyzed through SEM (Scanning Electron Microscope), FT-IR (Fourier Transform Infrared spectroscopy), XRD (X-ray Diffraction), and XPS (X-ray Photoelectron Spectroscopy). Waste graphite that was not treated with acid had a rapid decrease in capacity before 70 cycles, but graphite that had been treated with citric acid showed a capacity of 302.9 mAh g-1 and a capacity retention rate of 93.1% at 100 cycles. In addition, despite changes in current density in rate performance, samples treated with citric acid showed 340.2 mAh g-1 performance at 1.0C without change in capacity. As a result, it was confirmed that citric acid treatment not only effectively removed impurities and showed a high capacity retention rate, but also showed stability even at high current densities.

본 연구에서는 구연산 처리를 통하여 폐흑연의 Li, F 등의 불순물을 제거하였으며, 이에 따른 재생 흑연의 구조적 특성, 용량 및 내구성 변화를 관찰하였다. 질소 분위기에서 전처리를 진행한 재생 흑연은 구연산에서 산처리를 진행하였고 SEM (Scanning Electron Microscope), FT-IR (Fourier Transform Infrared spectroscopy), XRD (X-ray Diffraction), XPS (X-ray Photoelectron Spectroscopy)를 통해 구조와 특성 분석을 진행하였다. 산처리를 진행하지 않은 폐흑연은 70 사이클 이전에서 용량이 급격하게 감소하였으나 구연산 처리를 진행한 흑연은 100 사이클에서 302.9 mAh g-1의 용량과 93.1%의 용량 유지율을 나타내었다. 또한 Rate performance의 전류 밀도 변화에도 구연산 처리한 샘플은 용량의 변화없이 1.0C에서 340.2 mAh g-1의 성능을 나타내었다. 결과적으로 구연산 처리는 효과적으로 불순물을 제거하여 높은 용량 유지율을 나타내었을 뿐만 아니라 높은 전류 밀도에서도 안정적인 모습을 나타내는 것으로 확인하였다.

Keywords

References

  1. Arumugam Manthiram, "Materials Challenges and Opportunities of Lithium Ion Batteries," J. Phys Chem Lett., 2(3), 176-184(2011). 
  2. Arumugam Manthiram, "An Outlook on Lithium ion Battery Technology," ACS Cent. SCI. 3, 1063-1069(2017). 
  3. Michael Green, Aspects of Battery Legislation in Recycling and Re-use," Johnson Matthey Technol. Rev., 61(2), 87-92(2017). 
  4. Dornbusch, D. A., Hilton, R., Lohman, S. D. and Suppes, G. J., "Experimental Validation of the Elimination of Dendrite Short-circuit Failure in Secondary Lithium-metal Convection Cell Batteries," J. Electrochem. Soc., 162, 262-268(2015). 
  5. Jana, A., Ely, D. R. and Garcia, G. E., "Dendrite-separator Interactions in Lithium-based Batteries," J. Power Sources., 275, 912-912(2015). 
  6. Nazerian, M., B-Hoerh, N. and Mousavi, S. M., "Enhanced Bioleaching of Valuable Metals From Spent Lithium-ion Batteries Using Ultrasonic Treatment," Korean J. Chem. Eng., 40(3), 584-593(2023). 
  7. Lv, W. G., Wang, Z. H., Cao, H. B., Zheng, X. H., Jin, W., Zhang, Y. and Sun, Z., "A Sustainable Process for Metal Recycling from Spent Lithium-ion Batteries Using Ammonium Chloride," Waste Manag., 79, 545-553(2018). 
  8. Ma, X., Chen, M., Chen, B., Meng, Z. and Wang, Y., "High-performance Graphite Recovered From Scrapped Lithium-ion Batteries," ACS Sustain. Chem. Eng., 7, 19732-19738(2019). 
  9. Mayyas, A., Steward, D. and Mann, M., "The Case for Recycling : Overview and Challenges in the Material Supply Chain for Automotive Li-ion Batteries," Sustain Mater. Technol., 19, e00087(2019). 
  10. Moradi, B. and Botte, G., "Recycling of Graphite Anodes for the Next Generation of Lithium ion Batteries," J. Appl. Electrochem., 46, 123-148(2016). 
  11. Rothermel, S., Evertz, M., Kasnatscheew, J., Qi, X., Gretzke, M., Winter, M. and Nowak, S., "Graphite Recycling From Spent Lithium ion Batteries," ChemSusChem., 9, 3473-3484(2016). 
  12. Niu, B., Xiao, J. and Xu, Z., "Advances and Challenges in Anode Graphite Recycling from Spent Lithium-ion Batteries," Journal of Hazard Mater., 439(5), 129678(2022). 
  13. Arshad, F., Li, L., Amin, K., Fan, E., Manurkar, N., Ahmad, A., Yang, J., Wu, F. and Chen, R., "A Comprehensive Review of the Advancement in Recycling the Anode and Electrolyte From Spent Lithium ion Batteries," ACS Sustain. Chem. Eng., 8, 13527-13554 (2020). 
  14. Gao, Y., Zhang, J., Jin, H., Liang, G., Ma, L., Chen, Y. and Wang, C., "Regenerating Spent Graphite from Scrapped Lithium-ion Battery by High-temperature Treatment," Carbon., 189(15), 493-502(2022). 
  15. Wang, H., Huang, Y., Huang, C., Wang, X., Wang, K., Chen, H., Liu, S., Wu, Y., Xu, K. and Li, W., "Reclaiming Graphite from Spent Lithium ion Batteries Ecologically and Economically," Electrochim. Acta. 313, 423-431(2019). 
  16. Ma, X., Chen, M., Chen, B., Meng, Z. and Wang, Y., "High Performance Graphite Recovered from spent Lithium-Ion Batteries," ACS Sustainable Chem. Eng., 7(24), 19732-19738(2019). 
  17. Xu, Y. J., Song, X. H., Chang, Q., Hou, X. L., Sun, Y., Feng, X. Y., Wang, X. R., Zhan, M., Xiang, H. F. and Yu, Y., "The Regeneration of Graphite Anode from Spent Lithium-ion Batteries by Washing with a Nitric Acid/ethanol Solution," New Carbon Materials. 37(5), 1011-1020(2022). 
  18. Yang, Y., Song, S., Lei, S., Sun, W., Hou, H. S., Jiang, F., Ji, X. B., Zhao, W. and Hu, Y. H., "A Process for Combination of Recycling Lithium and Regenerating Graphite from Spent Lithium-ion Battery," Waste Manag., 85(15), 529-537(2019). 
  19. Ruan, D., Wu, L., Wang, F., Du, K., Zhang, Z., Zou, K., Wu, X. and Hu, G., "A Low-cost Silicon-graphite Anode Made from Recycled Graphite of Spent Lithium-ion Batteries," J. Electroanal. Chem., 884(1), 115073(2021). 
  20. Liu, K., Yang, S., Luo, L., Pan, Q., Zhang, P., Huang, Y., Zheng, F., Wang, H. and Li, Q., "From Spent Graphite to Recycle Graphite Anode for High-performance Lithium ion Batteries and Sodium ion Batteries," Electrochim Acta. 356(1), 136856(2020). 
  21. Yu, J., Lin, M., Tan, Q. and Li, J., "High-value Utilization of Graphite Electrodes in Spent Lithium-ion Batteries : From 3D Waste Graphite to 2D Graphene Oxide," Journal of Hazardous Materials. 401(5), 123715(2021). 
  22. Li, H., Peng, J., Liu, P., Li, W., Wu, Z., Chang, B. and Wang, X., "Re-utilization of Waste Graphite Anode Materials From Spent Lithium-ion Batteries," J. Electroanal. Chem., 932(1), 117247(2023). 
  23. Gao, Y., Zhang, J., Jin, H., Liang, G., Ma, L., Chen, Y. and Wang, C., Regenerating Spent Graphite From Scrapped Lithium-ion Battery by High-temperature Treatment," Carbon., 189(15), 493-502(2022). 
  24. Yang, J., Fan, E., Lin, J., Arshad, F., Zhang, X., Wang, H., Wu, F., Chen, R. and Li, L., "Recovery and Reuse of Anode Graphite from Spent Lithium-Ion Batteries via Citric Acid Leaching," ACS Appl. Energy Mater., 4(6), 6261-6268(2021). 
  25. Xiao, H., Ji, G., Ye, L., Li, Y., Zhang, J., Ming, L., Zhang, B. and Ou, X., Efficient Regeneration and Reutilization of Degraded Graphite as Advanced Anode for Lithium-ion Batteries," J. Alloys Compd., 888(25), 161593(2021). 
  26. Shin, Y.-R., Jung, S.-M., Jeon, I.-Y. and Baek, J.-B., "The Oxidation Mechanism of Highly Ordered Pyrolytic Graphite in a Nitric Acid/sulfuric Acid Mixture," Carbon., 52, 493-498(2013). 
  27. Mazarji, M., Mahmoodi, N. M., Bidhendi, G. N., Minkina, T., Sushkova, S., Mandzhieva, S., Bauer, T. and Soldatov, A., "Visible-Light-Driven Reduced Graphite Oxide as a Metal-Free Catalyst for Degradation of Colored Wastewater," Nanomaterials, 12(3), 374(2022). 
  28. Quinlan, R. A., Lu, Y. C., Kwabi, D., Horn, Y. S. and Mansour, A. N., "XPS Investigation of the Electrolyte Induced Stabilization of LiCoO2 and "AlPO4"-Coated LiCoO2 Composite Electrodes," J. Electrochem Society, 163, 2(2016). 
  29. Limcharoen, A., Pakpum, C. and Limsuwan, P., "An X-ray Photoelectron Spectroscopy Investigation of Redeposition from Fluorine-based Plasma Etch on Magnetic Recording Slider Head Substrate," Procedia Eng., 32, 1043-1049(2012). 
  30. Gao, Y., Zhang, J., Chen, Y. and Wang, C., "Improvement of the Electrochemical Performance of Spent Graphite by Asphalt Coating," Surf Interfaces, 24, 101089(2021).