• Title/Summary/Keyword: battery management

Search Result 607, Processing Time 0.027 seconds

Effect of Thermal Management of Lithium-Ion Battery on Driving Range of Electric Vehicle (리튬이온 배터리의 열관리가 전기자동차 주행거리에 미치는 영향)

  • Park, Chul-Eun;Yoo, Se-Woong;Jeong, Young-Hwan;Kim, Kibum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.5
    • /
    • pp.22-28
    • /
    • 2017
  • The performance of lithium ion batteries used in electric vehicles (EV) varies greatly depending on the battery temperature. In this paper, the finite difference method was used to evaluate the temperature change, state of charge (SOC), internal resistance, and voltage change of the battery due to heat generation in the battery. The simulation model was linked with AMESim to calculate the driving range of an EV traveling in New European Driving Cycle (NEDC) mode. As the temperature dropped below $25^{\circ}C$, the internal resistance of the battery increased, which increased the amount of heat generated and decreased the driving range of EV. At battery temperatures above $25^{\circ}C$, the driving range was also decreased due to reduced SOC that deteriorated the battery performance. The battery showed optimal performance and the driving range was maximized at $25^{\circ}C$. When battery temperatures of $-20^{\circ}C$ and $45^{\circ}C$, the driving range of EV decreased by 33% and 1.8%, respectively. Maintaining the optimum battery temperature requires heating the battery at low temperature and cooling it down at high temperature through efficient battery thermal management. Approximately 500 W of heat should be supplied to the battery when the ambient temperature is $-20^{\circ}C$, while 250 W of heat should be removed for the battery to be maintained at $25^{\circ}C$.

Hybrid Power Management System Using Fuel Cells and Batteries

  • Kim, Jae Min;Oh, Jin Seok
    • Journal of information and communication convergence engineering
    • /
    • v.14 no.2
    • /
    • pp.122-128
    • /
    • 2016
  • In the future, hybrid power management systems using fuel cells (FCs) and batteries will be used as the driving power systems of ships. These systems consist of an FC, a converter, an inverter, and a battery. In general, an FC provides steady-state energy; a battery provides the dynamic energy in the start state of a ship for enabling a smooth operation, and provides or absorbs the peak or dynamic power when the load varies and the FC cannot respond immediately. The FC voltage range is very wide and depends on the load; Therefore, the FC cannot directly connect to the inverter. In this paper, we propose a power management strategy and design process involving a unidirectional converter, a bidirectional converter, and an inverter, considering the ship's operating conditions and the power conditions of the FC and the battery. The presented experimental results were verified through a simulation.

Design and Implementation of Power Management Circuit for Semi-active RFID Tags (반 능동형 RFID 태그를 위한 전원 제어 회로 설계 및 구현)

  • Kim, Yeong-Kyo;Yi, Kyeon-Gil;Cho, Sung-Kyo;Nam, Ki-Hun;Kim, Shi-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.10
    • /
    • pp.1839-1844
    • /
    • 2010
  • A power management controller circuit with switched capacitor mode down regulator and battery charger block for semi-active RFID tags was proposed and fabricated. The main purposes of the proposed switched capacitor mode down regulator and battery charger block are to reduce standby current and to provide a self-controlled thin film battery charger by detecting the received RF power, respectively. Fabricated chip area is $360,000{\mu}m^2$ and measured standby current was about $1.3{\mu}A$. To further reduction of standby current, a wake-up circuit has to be included in the power management controller.

The Development of an Optimal Management System for Industrial Batteries (산업용 축전지 최적 관리시스템 개발)

  • Min, Byoung-Gwon;Ryu, Seung-Pyo;Shin, Hyun-Joo
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1009-1011
    • /
    • 2002
  • Some defective cells in the battery bank of power systems using batteries result in deterioration of the performance of the total battery bank. Consequently, the battery bank can't perfectly back up the system in occurrence of any power problems and the overcharge of defective cells may lead to their explosion or the occurrence of fire. The developed battery management system in this study enables operators to telemeter and analyze internal resistance, voltages, currents, and temperatures of batteries at remote sites through a PC, so they can detect defective cells before the occurrence of power problems. And adoption of this system ensures extension of battery life.

  • PDF

Development of hybrid system with fuel cell and lithium secondary battery (연료전지와 리튬 이차전지의 하이브리드 시스템 개발)

  • Hwang, Sangmoon;Jung, Eunmi;Son, Dongun;Shim, Taehee;Song, Hayoung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.143.2-143.2
    • /
    • 2010
  • Therefore, with this development assignment we'd like to develop the hybrid system combining 800W DMFC (Direct Methanol Fuel Cell) and 1.6kW of Lithium secondary battery pack which can be applied to the most common small cart. a scooter, to secure the development capability of hundreds of Watts DMFC, the high-capacity Lithium secondary battery pack, the technology of BMS (Battery Management System) and the development technology of hybrid system. DMFC, in fact, has lower energy efficiency than PEMFC (Polymer Electrolyte Membrane Fuel Cell); however, it has several advantages in terms of fuel storage and use. It is pretty easy to be stored and used without any additional colling and heating devices because of its insensitive liquid methanol to temperature. In conclusion, DMFC system is the most suitable device for small mobile vehicles.

  • PDF

A Study on the Algorithm of Battery SOH Estimation for Battery Management System(BMS) (배터리관리시스템(BMS)을 이용한 배터리 잔존수명(SOH) 추정 알고리즘에 관한 연구)

  • Seo, Cheol-Sik;Moon, Jong-Hyun;Park, Jae-Wook;Kim, Geum-Soo;Kim, Dong-Hee
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.317-320
    • /
    • 2008
  • This paper presents the battery management system(BMS) for the optimum conditions of the lead-Acid battery in UPS. The proposed system controls the over and under currents of battery for protecting and it was applied algorithm for optimum conditions to estimate the State Of Charge(SOC) and State Of Health(SOH) in charge or discharge mode. It approved the performance and the algorithm for the estimation of SOH, through the experiments which using the charge and discharge tester and the field tests.

  • PDF

A Study on the Battery Management System for the optimum conditions of the battery in UPS (UPS용 배터리 최적화를 위한 배터리관리시스템에 관한 연구)

  • Moon, Jong-Hyun;Seo, Cheol-Sik;Park, Jae-Wook;Kim, Geum-Soo;Kim, Dong-Hee
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.321-324
    • /
    • 2008
  • This paper presents the battery management system(BMS) for the optimum conditions of the lead-Acid battery in UPS. The proposed system controls the over and under currents of battery for protecting and it was applied algorithm for optimum conditions to estimate the State Of Charge(SOC) in charge or discharge mode. It approved the performance and the algorithm for the estimation of SOC, through the experiments which using the charge and discharge tester and the field tests.

  • PDF

Modeling of 36V lead acid battery for 42V system simulation (42V 시스템 시뮬레이션을 위한 36V 납축전지 모델링)

  • Yun Han-Seok;Lee Jea-Ho;Cho Bo-Hyung
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1525-1527
    • /
    • 2004
  • Modeling of the battery for 42V Power-Net system is presented. For the Battery Management System(BMS) algorithm in a Mildhybrid vehicle, accuracy in SOC estimation is crucial. The battery model is needed for the BMS algorithm as well as system computer symulation for the energy management. The battery model was composed of impedance elements and the each element of the model is estimated by the analysis of the terminal voltage. The result of the model is confirmed by experimental data.

  • PDF

Comparative Analysis of the characteristics of Ni-rich LIB according to temperature change (온도 변화에 따른 Ni-rich LIB의 설계인자별 파라미터 특성 비교 분석)

  • Gwon, Sun-Jong;Im, Ji-Hun;Choe, Jin-Hyeok;Kim, Jong-Hun
    • Proceedings of the KIPE Conference
    • /
    • 2018.11a
    • /
    • pp.131-132
    • /
    • 2018
  • The world market for BESS (Battery Energy Storage System) is growing rapidly, and battery technology is also developing. It is important to understand the battery characteristics and develop a control strategy to develop the optimal BMS (Battery Management System). In this paper, we compare and analyze the parameter characteristics of NCM LIB (Lithium Ion Battery) according to the temperature change.

  • PDF

New Battery Balancing Circuit using Magnetic Flux Sharing

  • Song, Sung-Geun;Park, Seong-Mi;Park, Sung-Jun
    • Journal of Power Electronics
    • /
    • v.14 no.1
    • /
    • pp.194-201
    • /
    • 2014
  • To increase the capacity of secondary cells, an appropriate serial composition of the battery modules is essential. The unbalance that may occur due to the series connection in such a serial composition is the main cause for declines in the efficiency and performance of batteries. Various studies have been conducted on the use of a passive or active topology to eliminate the unbalance from the series circuit of battery modules. Most topologies consist of a complex structure in which the Battery Management System (BMS) detects the voltage of each module and establishes the voltage balancing in the independent electrical power converters installed on each module by comparing the module voltage. This study proposes a new magnetic flux sharing type DC/DC converter topology in order to remove voltage unbalances from batteries. The proposed topology is characterized by a design in which all of the DC/DC convertor outputs connected to the modules converge into a single transformer. In this structure, by taking a form in which all of the battery balancing type converters share magnetic flux through a single harmonic wave transformer, all of the converter voltages automatically converge to the same voltage. This paper attempts to analyze the dynamic properties of the proposed circuit by using a Programmable Synthesizer Interface Module (PSIM), which is useful for power electronics analysis, while also attempting to demonstrate the validity of the proposed circuit through experimental results.