• Title/Summary/Keyword: batch size

Search Result 431, Processing Time 0.028 seconds

Batch Scheduling of Incompatible Job Families with Sequence Independent Setup Times (공정 교체 시간을 고려한 배치작업의 일정계획)

  • 김주일;이영훈
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.26 no.2
    • /
    • pp.69-83
    • /
    • 2001
  • The problem of minimizing total tardiness on a batch processing machine with incompatible job families when there are sequence independent setup times between families is studied where all jobs of the same family have identical processing times and jobs of different families cannot be processed together. A batch processing machine can process a number of jobs, within a maximal batch size, simultaneously as a batch. The processing time required of each batch is equal to the one of jobs. A dynamic programming algorithm which gives the optimal solution, and several heuristics are presented. Performance of simple dispatching rules based on due dates are compared, and the best of them is used as an initial solution for the decomposition algorithm, which is shown to give good schedules in relatively short computational time.

  • PDF

Red Pigment Overproduction by Fed-Batch Culture of Monascus anka (Monascus anka로부터 유기배양에 의한 적색소의 대량생산)

  • 김희구;박근태;손홍주
    • The Korean Journal of Food And Nutrition
    • /
    • v.11 no.6
    • /
    • pp.617-621
    • /
    • 1998
  • The production of red pigment from glucose by fed-batch culture of Monascus anka was investigated. In batch culture using fermentor, 200 rpm of agitation speed, 1vvm of aeration volume, and 10% (v/v) of inoculum size were optimal, respectively. The red pigment production was increased by removal of wall-attached mycelium. In an intermittent feeding fed-batch culture, dry cell weight increased to 30 g/l, adn the red pigment content reached 350 of absorbance at 495nm. In a continuous feeding fed-batch culture, dry cell weight increased to 22g/l, and the red pigment content reached 190 of absorbance at 495nm.

  • PDF

Crystallization of High Purity Ammonium Meta-Tungstate for production of Ultrapure Tungsten Metal

  • Choi, Cheong-Song
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1997.10a
    • /
    • pp.1-5
    • /
    • 1997
  • The growth mechanism of AMT(Ammonium Meta-Tungstate) crystal was interpreted as two-step model. The contribution of the diffusion step increased with the increase of temperature, crystal size, and supersaturation. The crystal size distribution from a batch cooling crystallizer was predicted by the numerical solution of a mathematical model which uses the kinetics of nucleation and crystal growth. Temperature control of a batch crystallizer was studied using Learning control algorithm. The purity of AMT crystal producted in this investigation was above 99.99%.

  • PDF

Semantic Segmentation of Drone Imagery Using Deep Learning for Seagrass Habitat Monitoring (잘피 서식지 모니터링을 위한 딥러닝 기반의 드론 영상 의미론적 분할)

  • Jeon, Eui-Ik;Kim, Seong-Hak;Kim, Byoung-Sub;Park, Kyung-Hyun;Choi, Ock-In
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.2_1
    • /
    • pp.199-215
    • /
    • 2020
  • A seagrass that is marine vascular plants plays an important role in the marine ecosystem, so periodic monitoring ofseagrass habitatsis being performed. Recently, the use of dronesthat can easily acquire very high-resolution imagery is increasing to efficiently monitor seagrass habitats. And deep learning based on a convolutional neural network has shown excellent performance in semantic segmentation. So, studies applied to deep learning models have been actively conducted in remote sensing. However, the segmentation accuracy was different due to the hyperparameter, various deep learning models and imagery. And the normalization of the image and the tile and batch size are also not standardized. So,seagrass habitats were segmented from drone-borne imagery using a deep learning that shows excellent performance in this study. And it compared and analyzed the results focused on normalization and tile size. For comparison of the results according to the normalization, tile and batch size, a grayscale image and grayscale imagery converted to Z-score and Min-Max normalization methods were used. And the tile size isincreased at a specific interval while the batch size is allowed the memory size to be used as much as possible. As a result, IoU was 0.26 ~ 0.4 higher than that of Z-score normalized imagery than other imagery. Also, it wasfound that the difference to 0.09 depending on the tile and batch size. The results were different according to the normalization, tile and batch. Therefore, this experiment found that these factors should have a suitable decision process.

An Approximation Algorithm for 2-batch Consolidation with Small Items (일괄처리를 위한 배치통합문제의 근사해법)

  • Myung, Young-Soo
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.38 no.1
    • /
    • pp.61-67
    • /
    • 2013
  • We consider a problem of grouping orders for batch processing that arises in production systems where customer orders are processed in batches. This problem can be viewed as a variant of bin packing problem where items can be split and a pair of items can be placed in a bin when the items are compatible with each other. In this paper, we consider a special case that at most two different items can be placed in a single bin and the size of every item is at most the size of a bin.

Performance Analysis of a Discrete-Time Two-Phase Queueing System

  • Kim, Tae-Sung;Chang, Seok-Ho;Chae, Kyung-Chul
    • ETRI Journal
    • /
    • v.25 no.4
    • /
    • pp.238-246
    • /
    • 2003
  • This paper introduces the modeling and analysis of a discrete-time, two-phase queueing system for both exhaustive batch service and gated batch service. Packets arrive at the system according to a Bernoulli process and receive batch service in the first phase and individual services in the second phase. We derive the probability generating function (PGF) of the system size and show that it is decomposed into two PGFs, one of which is the PGF of the system size in the standard discrete-time Geo/G/1 queue without vacations. We also present the PGF of the sojourn time. Based on these PGFs, we present useful performance measures, such as the mean number of packets in the system and the mean sojourn time of a packet.

  • PDF

A Batch Arrival Queue with Bernoulli Vacation Schedule under Multiple Vacation Policy

  • Choudhury Gautam;Madan Kailash C.
    • Management Science and Financial Engineering
    • /
    • v.12 no.2
    • /
    • pp.1-18
    • /
    • 2006
  • We consider an $M^x/G/1$ queueing system with Bernoulli vacation schedule under multiple vacation policy. where after each vacation completion or service completion the server takes sequence of vacations until a batch of new customer arrive. This generalizes both $M^x/G/1$ queueing system with multiple vacation as well as M/G/1 Bernoulli vacation model. We carryout an extensive analysis for the queue size distributions at various epochs. Further attempts have been made to unify the results of related batch arrival vacation models.

Order Batch Formations for Less Picker Blocking in a Narrow-Aisle Picking System

  • Hong, Soondo
    • Industrial Engineering and Management Systems
    • /
    • v.14 no.3
    • /
    • pp.289-298
    • /
    • 2015
  • This paper analyses the best batch formations for order picking throughput in narrow-aisle order picking systems. Our analytical comparison finds that a high pick density variation leads to a heavy picker blocking. Simulation experiments show that a distance-based batching algorithm reduces picker blocking by decreasing the number of aisles visited and stabilizing the variation in number of picks per aisle by packing orders tightly, and that the solution quality and mechanism for determining the batch size dictated by the sorting strategy causes varying amounts of blocking. We conclude that combining a distance-based batching method with an appropriate batch sizing strategy will reduce picker blocking and shorten travel in narrow-aisle picking systems.

The Heuristic Approach to the Order Consolidation Problem (주문 집약 문제에 대한 휴리스틱 기법)

  • Park, Jongho;Lim, Kyungkuk;Choi, Bongha
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.34 no.4
    • /
    • pp.408-413
    • /
    • 2008
  • We consider the batch processing of orders where either whole or part of a single order or a specific pair of different orders may be grouped in a batch within a fixed capacity. Our objective is to maximize the total number of batches filled up to the batch size. In this paper, we study the Level-2 problem where at most 2 kinds of orders can be grouped in a batch. This problem is known to be NP-hard and Max SNP-hard. So we develop heuristic algorithm and evaluate the performance of the algorithm.

Analysis of a Queueing Model with Time Phased Arrivals

  • Kim, Che-Soong
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.12 no.4
    • /
    • pp.107-118
    • /
    • 2007
  • A single-server queueing model with infinite buffer and batch arrival of customers is considered. In contrast to the standard batch arrival when a whole batch arrives into the system at one epoch, we assume that the customers of an accepted batch arrive one-by one in exponentially distributed times. Service time is exponentially distributed. Flow of batches is the stationary Poisson arrival process. Batch size distribution is geometric. The number of batches, which can be admitted into the system simultaneously, is subject of control. Analysis of the joint distribution of the number batches and customers in the system and sojourn time distribution is implemented by means of the matrix technique and method of catastrophes. Effect of control on the main performance measures of the system is demonstrated numerically.

  • PDF