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ABSTRACT

We consider an MX%/G /1 queueing system with Bernoulli vacation schedule under multiple vacation
policy, where after each vacation completion or service completion the server takes sequence of
vacations until a batch of new customer arrive. This generalizes both MX/G /1 queueing system with
multiple vacation as well as /G /1 Bernoulli vacation model. We carryout an extensive analysis for
the queue size distributions at various epochs. Further attempts have been made to unify the results
of related batch arrival vacation models.

Keywords: MX/G/1 Queue, Vacation Time, Bernoulli Schedule Vacation, Multiple Vacation Policy,
Queue Size

1. INTRODUCTION

The queueing system under the special consideration with respect to idle period
(refereed to as vacation) is not new. Levy and Yechiali [20] were first to consider
such a model under the assumption that the server takes a sequence of vacations
until it finds at least one unit is waiting in the system at the end of a vacation,
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known as multiple vacation policy (MVP). One of the most remarkable result that
concern with such types of models is Stochastic Decomposition result, which al-
lows the system to be analyzed by considering separately the distribution of the
queue size with no vacations and the additional queue size due to vacation. This
important result was first established by Fuhrmann and Cooper [9] for the M/G/1
queue with generalized vacations. The case where length of each vacation has
constant (fixed) length of duration ‘T’ is so called T-Policy, introduced by Heyman
{11] in the study of a control operating policy. The literature on control of queue-
ing system is rich and varied. For a survey see Tadj and Choudhury [27].

Perhaps due to practical applications in many real life situtations there have
been considerable amount of works done on 7T-Policy models during the last dec-
ade. Gakis et al. [10] studied the distributions of idle and busy periods in several
controlable M/G/1 queues including 7-Policy. Recently, Artalejo and Lopez Her-
roro [1] investigate the busy period distribution of 7-Policy model further through
entropy maximization principle and corrected the result of [10] for purely Mark-
ovian models. Tadj [26] studied the queue size distribution of the T-policy model
for quorum queueing system. His analysis is bassed on combination of embedded
Markov chain and Semi-regenerative process.

Another more general class of model related to multiple vacation model is
Bernoulli vacation model, where after each service completion the server may
take vacation with probability p (0 < p < 1) and starts a new service with probabil-
ity (1-p). The decision about taking a vacation after each service completion or
vacation completion are independent. This type of model was introduced by Kel-
sion and Servi [12] for GI/G/1 queueing system extended in a few following papers
[13, 14, 23, 25] for M/G/1 queueing system under MVP. Recently, Madan and
Choudhury [21] investigate the Bernoulli vacation model with single vacation for
a batch arrival queueing system under restricted admissibility policy, according
to which Ci (say) percent of arrival batches are accepted during busy period and
C: (say) percent of arrival batches are accepted during vacation periods.

Presently, most of the studies have been devoted to batch arrival vacation
models under different vacation policy because of its interdisciplinary character.
Numerous researchers, including Baba [2], Lee and Srinivasan [17], Rosenberg
and Yechiali [24], Teghem [29], Lee et al. [18, 19], Choudhury [5, 6] and Yechialli
[31] and many other studied batch arrival queueing system under different vaca-
tion policies.

However, in this paper we propose to study such an MX/G/1 Bernoulli vaca-
tion model, where concept of multiple vacation policy is also introduced. Our ob-
jective in present paper is not only generalize M/G/1 Bernoulli vacation model for
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batch arrival queueing system, but also to unify the results of many related vaca-
tion models.

As possible extension of our model we mention the possibility of assuming
batch services and control policies (see recent papers [16, 31] and references
therein) as auxiliary tools leading to development of more versatile queueing
models with applications to transportation, production systems and digital com-
munication systems.

The rest of the paper is organized as follows. In section 2, we describe the
mathematical model of the present paper. Section 3 deals with queue size distri-
bution at a random epoch and at a departure epoch. The queue size distribution
at busy period initiation epoch and busy period distribution are discussed in sec-
tion 4 and section 5. The queue size distribution due to idle period process is in-
vestigated in section 6. In section 7 we obtain mean queue sizes. Finally queue
waiting time distribution has been derived in section 8.

2. MATHEMATICAL MODEL

We consider an MX/G/1 queueing system in which arrival occurs according to a
compound Poisson process with batches of random size X. An active server goes
on serving the units until the system becomes empty. The service discipline is
assumed to be FCFS. After each service completion the server may have a option
to go for a short vacation (Phase-1I vacation) with probability p and start a new
service with probability g (= 1-p). However, if the system becomes idle, after a ser-
vice completion or a Phase-II vacation completion, the server takes a primary va-
cation (Phase-I vacation), if there is no unit in the system. This process will be
repeated until it finds at least a batch of customer in the queue i.e. we are consid-
ering the case of multiple vacations. In general, if the server finds a batch of cus-
tomers upon return from the Phase-I vacation, it always starts the service of the
first arrival. The decision about taking a Phase-I vacation after each service com-
pletion or Phase-II vacation completion are independent. Further, it is assumed
that service time (B) random variable and vacation time (V) random variable (ei-
ther in Phase-I vacation or in Phase-II vacation) are independent of each other
and that of arrival process. Thus the time required by a customer to complete a
service cycle, which we may call as a modified service time and is given by

B+V with probability p
B with probability q=>1-p)
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In fact, the concept of modified service time was first introduced by Keilson
and Servi [12] for an GI/G/1 queueing system and subsequently by others (e.g.
see [25]) for M/G/1 queueing systems. The policy adopted in our model may be
termed as multiple vacation policy. It should be noted here that, if p = 1, this va-
cation policy results in a vacation after each service completion (e.g. see Takagi
[28]). Similarly, if p = 0 this reduces to the MX/G/1 queue with multiple vacations
considered by Baba [2] (also see [6]). Using Kendall’s notation, the model consider

here is an M*/G/1(BS)/ Vy queue, where V), represents vacation time with

multiple vacations and BS denotes Bernoulli schedule.

3. QUEUE SIZE DISTRIBUTION AT ARANDOM EPOCH

In this section, we first set up the system state equations for its stationary (ran-
dom) queue size (including the one being served, if any) distribution by treating
the elapsed service time and the elapsed vacation time as supplementary vari-
ables. Then we solve the equations and derive the probability generating function
(PGF) for it. We now define following notations and probabilities:

A batch arrival rate
X arrival size of a batch (a random variable)
a,=Prob{X=k;k=1,2,3, ..

B(x)[V(x)] Probability distribution function of B [V]
B )V (9)] Laplace Stieltjes transform of B [V]
EBHIEWV)] r-th moment of B [V]
E[X,,) = E[[ [(X i +1)] r-th factorial moment of X

i=1

Further, it may be noted that V(0)=0, V(x)=1, B(0)=0 and B(w)=1 and
that V(x) and B(x) are continuous at x = 0, such that

dV(x) _ _dB()
v e

v(x)dx = = ?B(Sc—)_

are the first order differential functions (hazard rate function) of V and B re-

spectively.
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Let Ng(f) be the queue size at time ‘t’ and B%(t) be the elapsed service time

at time ‘t’. Further, we assume that V°(t) be the elapsed vacation time at time ‘t’

and define the following random variable:

0,if the server is on Phase—I vacation at time 't'
Y()=<1,if the server is on Phase—1II vacation at time 't'
2,if the server is busy at time 't'

Thus the supplementary variables B°(t) and V°(f) are introduced in order

to obtain a bivariate Markov process {Nq(t), Y(¢)} and define the following limit-

ing probabilities
Poyn(x)dx=}i_r)2Prob [Ng(®) =n, Y®) =0; x<V°(¢)<x+dx], x>0, n>0,
Pl'n(x)dx=}i_E:Prob [No®) =n, Y®)=1x<V°t)<x+dx], x>0, n20,
and Qn(x)=}i_)rgProb [NQ(t)=n, Y()=2; x<B0(t)Sx+dx], x>0, n>1.

Also, we define

P, = ‘[Pi’n(x)dx for i=0,1,n2>21and Q, = IQn(x)dx in>1.
0 0

Then the Kolmogorov forward equations, to govern the system under the
steady state conditions (e.g. see Cox [8]) can be written as follows:

Zid;PO'n(x) +[A+v@)]A, , (x) = liakPo’n_k(x); x>0,n20, 3.1)
k=1
& p )+ [+ @B ) = A3 @ Py (®); £>0,n20, (3.2)
dx : ] >
d%Q,, ) +[A + 4IQ, (&) = 43 0@, 4 (x); x>0, 21, 3.3)
k=1
1 «© @
APyg =Y [u(x)Pg(x)dx +q [u(x)@Q) (x)dx (3.4)
i=C 9 0

where F,_;(x)=0 fori=0, 1 occurring in equations (3.1) and (3.2) and Q,(x)=0

occurring in equation (3.3).
These set of equations are to be solved under the following boundary conditions at
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x=0
PO,n (0) = ’150,nP0,0? nz 0
B ,0)=p I w(x)Q,,,(x)dx; n>=0
0
1 ® ©
Q,(0) =" [u(x)P,, (x)dx +q [p(x)Q,, (x)dx ; n21,
i=0( 0
where ;= © . " denotes Kronecker’s delta.
S0y if i#j

To solve these equations the normalizing condition is given by

1 o © o 0O
> [B.wde+ Y [@,(x)dx =1,
i=0n=00 n=10

Let us define the following PGF’s:
P(x;2)=) 2"P, (x); (lzI1<Lx>0:) for i=0,1
n=0
P(0;2)= Y 2"P,(0); (lzI<1:) for i=0,1
n=0

Qx;2) = i 2"Q,(x); (lzl<lLx>0)
n=1

Q0;2) = iz”Qn(O); (¢lzlkl:).and X(2)= iz”an Glzlk1y).

n=1 n=1

(3.5)

(3.6)

3.7

(3.8)

Now proceeding in the usual manner with the equations (3.1)-(3.3), we obtain

P.(x;2) = P(0;2)[1 - V(x)]e ¥4 X% x>0, for i=0,1
and Q(x;2) = Q(0;2)[1 — B(x)le *-X@)* x>,

3.9
(3.10)

Now multiplying equation (3.5) by appropriate powers of z and then taking

summation over all values of ‘n’, we get

Fy(0,2) = AFy;

and therefore from equation (3.9) for i =0, we have

(3.11)
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Py1-V (A-2X(2))]

3.12
[L-X(2)] (312

Fy(z) = TPO (x;2)dx =
0

where V'(1-1X(2) = J‘e"m_x @*JV(x) is the z-transform of V.
0

Again multiplying equation (3.6) by appropriate powers of z and then taking
summation over all possible values of ‘n’, we get

P,(0;2) = pQ(0;2)B (A - AX(2))=; (3.13)

where B'(1-1X(z)) = I e A X@*gB(x) is the z-transform of B.
0

Similarly multiplying equation (3.7) by appropriate powers of z and then taking
summation over all possible values of ‘n’ and then utilizing (3.4), (3.10) and (3.13),

we get on simphification

~ AzPy o[-V (1 - AX(2))]
[{g+pV (A-AX(2))B (1- X (2))-2]

Q(0,2) (3.14)

and therefore from equation (3.9) on utilizing (3.13) and (3.14), we get fori = 1

© _ * _ 2 * .
P(2) = [Bi(x:2)dx = phll-V (f» AX(2)]"B *(/1 AX(2)) (3.15)
0 1-X@)Ilg+pV (A-AX (2B (1-1X(2)) - 2]

Finally from equations (3.10) and (3.14), we have

2Py o[1-V (A~ AX(2)][1- B (1 - 1X(2))]
[1-X@Il{g+pV (A-AX@NB (A-1X(2) 2]

Q(2) = [Q(x;2)dx = (3.16)
0

The unknown constant F,, can be determined by using the normalizing condi-

tion (3.8), which is equivalent to F,(1) + P,(1)+ Q(1) =1. Thus we get

_(-p).
0,0 — AE(V) ’ (317)

where p* =p+pAE(X)E(V) and p=AE(X)E(B) is the utilization factor of the

system.
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Note that equation (3.17) represents the steady state probability that the server
is idle but available in the system. Also, from equation (3.17) we have p <1,

which is the stability condition under which the steady state solution ex-
ists .Consequently , the system state probabilities can be obtained from (3.12),
(3.15) and (3.16) on utilizing (3.17). Thus we have

Prob [the server is on Phase-I vacation ] =Py(1) = (1~ o),
Prob [the server is on Phase-1I vacation] = P,(1) = pAE(X)E(V), and
Prob [the server is busy ]=Q(1) = p respectively.

Let Fy(z) = Fy(2) +2P,(2) + Q(z) be the PGF of the queue size distribution at a

random epoch, then

1-p)A-2)[1-V (4-AX(@)]g+pV (2 - AX()]B (1 - 1X(2))

PQ (2) = * *
EW)[A-2X(@)l{g+pV (A1 -2X(2))}B (A~ 1X(2)) - 2]

;(3.18)

which is consistent with the result obtained by Servi [24] for single unit arrival
case and with equation (3.11) of Choudhury [5] for p = 0.

Note that, the stochastic decomposition property for this model can be demon-
strated easily by showing

1-V (A-4X(2) || A= p)1-2)[g+pV (A - AX(2)]B (1 - 1X(2))
EWV)(A-1X(2) {g+pV (A-AX@NB (1 -1X(2) -z

=¢(2) Po(M¥/G/1(BS); 2) (3.20)

PQ(Z):{

where Pgo (M*/G/1(BS); 2), the second factor in the right hand side of equation
(3.20), is the PGF of the stationary queue size distribution of an M¥/G/1 queue
with a single vacation under Bernoulli vacation schedule. This can be obtained
from Pollaczeck Khinchine transform formula by replacing original service time
distribution by our modified service distribution i.e G (s)={g+pV (s)}B"(s) (in
terms of LST) and thus we have

1-p)A-2)g+pV (A-AXE)IB (1~ AX(2))

Po(MHIGI1(BS);2) = g i
o (BS);2) {g+pV (A-AX (2B (A-AX(2)) -2

-V (A-aX()]
E(V)[4-AX(2))]

the PGF of the number of customers that arrive during the residual life of the va-

and £(z) = ; the first factor in the right hand side of (3.20) is
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cation time (e.g. see Choudhury [5]).

Further utilizing the relationship between departure point queue size distribution
and queue size distribution at a random epoch (see section-3 of Choudhury [5]),
we may write

7[(2) - [1 _ X(z)]__
E(X)1-2)

_(-pHL-V (A-2X(@)llg+ poV (A~ AX(2)]B (A-1X(2)) . 3.21)
AE(OEV)q+pV (- AX(@)B (1-AX(2)-2]

Py(2)

where 7 (2) is the PGF of the queue size distribution at a departure epoch.
Now if the vacation time is deterministic with a constant (fixed) period of length
“T"’, then this will be the case of T-Policy (see Heyman [11]). Thus for this model,

we have V' (1-1X(2)) =e M4 X@D EWV)=T and p" = p+pE(X)AT and there-

fore from equation (3.21), we get

(1= 0")1 - e HTOX [ + pe T U-XB* (4~ 1X(2)) 3.22)
AE(X)T[{g + pe T XEMB (1 - 1X(2)) - 2] ’ '

7(z) =

which is the PGF of the queue size distribution at a departure epoch of an
MX/G/1 queue with T-Policy under Bernoulli schedule.
In particular, if p =0, then equation (3.22) reduces to

yo (=Pl - TN (2 - AX(2))

x(z -
AE(X)T[B (A -41X(2))-z]

which is the PGF of the queue size distribution at a departure epoch of an MX/G/1
queue with T-Policy. Note that for Prob{X = 1} = 1 i.e. for single unit arrival case
this agrees with equation (15) of Tadj [26].

Remark 3.1. It is important to note here that the stationary queue size distribu-
tion at a random epoch of this M*/G/L(BS)/ Vi queue given by the equation

(3.20) decomposes in to distributions of two independent random variables viz. —

1. The stationary queue size distribution of an M¥/G/1 queue with a single
vacation under Bernoulli schedule (represented by the second factor) and

2. The number of customers that arrive during the residual life of the vacation
time, which occur during the Phase-I vacation (represented by the first term).
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4. QUEUE SIZE DISTRIBUTION AT BUSY PERIOD INITIATION EPOCH

In this section we derive the PGF of the queue size distribution at busy period
initiation epoch. To derive it we define «,(n >1) as the steady state probability
that an arbitrary (tagged) customer finds a batch of ‘n’ customer in the queue (in-
cluding those are in service, if any) at busy period initiation epoch (or completion
epoch of the idle period). Then conditioning number of units within the arriving
batches during the Phase-I vacation and utilizing the argument of PASTA we
may write following state equation

n
a, = f,a®; n>1 (4.1)
k=1

where f, = Prob {'k’ individual units arrive (and are accepted) with Phase-I vaca-

tion}

Er
(1-g9)

k=1

2 -

= i(go)i g, =
=0

© —Ax
= Prob {9’ units arrive during the vacation time ‘V’ }= I———ﬁ&dv (x)
A, =X, +X,+-+X,;X,’s are i.i.d. random variables and have the same

distribution as X.
aj") = Prob {A, = j}is the n-fold convolution of {a;}with itself and a§°) =1.

Let a(z)= Z z"a, bethe PGFsof {a, n21},then from equation (4.1), we have
n=1

w(z) =V G=2XE@) -V Q)] 42
-V

which is the PGF of the queue size distribution at busy period initiation epoch.
Let E(a) be the expected number of arrivals during the idle period, then we have

E@) =Y na, =o' 1) = 2EXEV)

v 4.3
=i A-v() “3

Now utilizing Little’s formula in (4.3), we get
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E@ _ EV) _pomp .
EX) AV ) E(Ty) (say);

which is the expression for expected length of the idle period of this model.
In particular, if we take vacation time as deterministic with a fixed period of
length * T (i.e. for the case of T-Policy model), then

~-AT n
_e a7 >

n!

0

n

and therefore from equation (4.3) and (4.2), we have
[ FTA-X@) _ 2T}

1-e*T)

AEXOT
-y’

a(z) = and E(a)=

5. BUSY PERIOD DISTRIBUTION

Baba [2] obtained the LST of the busy period distribution for an M X161 queue
with multiple vacations. Now utilizing his argument, we can also obtain the LST
of the busy distribution from equation (4.2). We now define busy period as the
length of time interval that keeps the server busy without interruption. This con-
tinues up to the instant when the system becomes empty again. This means that
our busy period includes Phase-II vacation period. This type of busy period is
known as delay busy period and studied by Conway et al. [7] and Miller [22].

Let Ty and TB (s) be the busy period random variable and its LST respec-

tively, then utilizing the argument of Baba [2] in equation (4.2), we get

[V (A-AX(©E (s) -V (D],

Th(s) =
B (S) (1 _ V* (ﬂ)) »

where 8°(s) is the well known LST of the busy period distribution of an

MZ% /G /1 queue started with one unit by taking our modified service time as ser-

vice time and this is given by
8°(s) =G (s+A-AX(6"(s))) and G (s)=(q+pV (s)B (s).

The mean busy period is given by



12 CHOUDHURY AND MADAN

T | ___pEV) | PAEQOEV)
ds |, A-p)A-V'(A) a-p)a-V(2)

E(Ty) = 5.1
In particular , when p = 0, p* = p and therefore equation (5.1) (minor correction
of equation (31) of [2]) reduces to

pEV)
1-p)A-V (1)

E(Tyg) =

which is consistent with equation (4.15) of Yechialli [30] for single unit arrival case.
For the case of T-Policy model, we have V' (1) =e¢™*T and E(V) = T and therefore
equation (5.1) yields

pT PAEX)T?

E(T,) = .
@) A= p-pATEX)(1—-¢ ) (-p— pITEX)(1-¢ )’

which is consistent with equation (22) of Artalejo and Lopez-Herrero [1] for p =0
and E(X) = 1 i.e for single unit arrival case. It should be noted here that in this
context [1] have obtained some useful results including explicit expression for
probability density function of busy period distribution for an M/M/1 queue un-
der T-policy, N-Policy and D-Policy.

6. QUEUE SIZE DISTRIBUTION DUE TO IDLE PERIOD

In this section our objective is to obtain the stationary queue size distribution due
to the idle period process. To obtain it let us define {y, ;n >0} as the steady

state probability that a batch of ‘n’ customer arrived before a tagged customer
during the forward recurrence time (residual life) of the idle period in which the
tagged customer is chosen randomly from the arriving batch that turns up at the
busy period initiation epoch. Now since the batch of arriving customers are asso-
ciated with the tagged customer which is chosen randomly from the arriving
batches that turns up at the busy period initiation epoch and therefore by virtue
of “stationary renewal process” (see [15], page-94), we may write

W= 2, e s n=0,1,2,-
k=n+1 k

where {y, ; k>1} is the probability that the k-th. batch that starts a busy period
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to which the taggec arrival belongs is chosen randomly with probability (1/k).
This can be obtained directly from equation (4.1) by applying length biasing ar-
gument of renewal theory. Thus we get

na, _ a- v (Ana,
AEX)EWV)

o0
Z na,,
n=l

n:]_, 2,'-- (6.1)

Yo =

Let w(z) bethe PGF of {y,;n >0}, then we have

_A-V(2-1X@)) _ :
V) = DR As) - H@E:; (6.2)

where H(z) = %z(i)l)

arbitrary (tagged) customer in a batch in which the tagged customer arrives. This

is the PGF of the number of units placed before an

number is given as a backward recurrence time in discrete time renewal process,
where successive renewal points are generated by the arrival size random vari-
able. This is due to randomness nature of the arrival size random variable.

The expression (6.2) is the PGF of the queue size distribution of idle period due to
Phase-I vacation. Because of the PASTA property this is equivalent to the PGF of
the number of customers that arrive during an interval from the beginning of the
idle period to a random point in the idle period. More specifically, we may call it
queue size distribution due to the idle period. Note that for single unit arrival
case our equation (6.2) is consistent with the result obtained in Takagi [28].

Now let us consider the case of T-Policy model, where equation (6.1) becomes

) = n i e (T a® ;n =
AEX)T 1o &!

1,2,..

and therefore from equation (6.2), we have

[1 - e *Ta-X(@)y

AEX)T(-2) €9

w(2) =
which is the PGF of the queue size distribution due to the idle period of an
MX/G/1 queue with T-Policy. Note that for Prob {X = 1} = 1 i.e. for single unit

arrival case our equation (6.3) is consistent with formula (18) of Tadj [26] (also
see Bruneel [3]).
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Remark 6.1. The PGF of the queue size distribution due to idle period of

this M*/G/1(BS)/V,; queue given by equation (6.2) decomposes in to PGFs

of distributions of two independent random variables viz.-

1. The queue size distribution due to residual life of vacation time (represented
by the second term).

2. The queue size distribution due to random nature of the arrival size random
variable (represent by the first term).

7. MEAN QUEUE SIZE

Our next objective is to obtain the mean queue sizes at different point of time. Let
Ly be the mean queue size due to idle period process, then

L, =W/(1)=AE(X)E(VR)+E(XR); (7.1)
2
where E(Vy)= EVT) is the mean residual vacation time
2E(V)
and E(Xg)= Elxx ~D] is the mean residual batch size.
2E(X)

Again, if we denote L, as mean queue size at a random point of time then

L A’[E(B?)+ 2pE(V)E(B) + pE(V)]E%(X)
2-p")

LAMEB) + pE(V)]F[X (X-1)]

20-p)

Lo=P/W=p

+AE(X)E(Vy);

which is consistent with the result obtained by Choudhury [6] for p = 0.
Further, mean queue size at a departure epoch Lg (say), of this model is found
to be
L A*[E(B*) +2pE(V)E(B) + pE(V*)]E*(X)
2(1-p")
HE®) + pEWIEX(X D] |
20-p)

Lszfr/(l):p

(7.2)

In particular, if we take p = 0 and E(V) = T and E(V2) = T2 then from equation
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(7.2), we have

. A2E(B®)E*(X) L EXp)  AEXT
2(1-p) a-p) 2

Lsg=p

which is the expression for an M*/G/1 queue under T-Policy. Note that for
Prob {X = 1} = 1, the above result agrees with equation (9) of Heyman [11] (also
see Tadj [26]).

8. WAITING TIME DISTRIBUTION

To obtain the waiting time distribution in the queue, we first derive the waiting
time of the first customer in an arriving batch, W, (say) and use Wl* (s) to denote
LST of W,.

Now if we identify a batch with a single customer, then its service time is just
the modified service time of customers constituting the batch. In this case, the
batch will have as its batch size X(z) =z. The mean arrival rate will be 1 and
LST of the modified service time of the batch will replace G (s) =(g+ pV " (s))B"(s)
by X(G'(s)). Using the information and the results by Chaudhry and Templeton
[4] (see Chapther 3) , from equation (3.21) we have

_Q=-pO-V (A~ A2)X[G (A~ 42)]

- (8.1)
AE(V)[X[G" (A - A2)] - 2]

7(2)

If the waiting time of each batch is independent of the part of arrival process
following the arrival time of the batches left behind a departing batch are those
that arrive during the time it spends in the queue and in service. it follows that
(see Fuhrmann and Cooper [9]).

7(2) = W, (A- 12)X[G" (A - 12)] (8.2)
Now putting s =(1- Az)in (8.2) and utilizing (8.1) in (8.2), we get finally

VVI*(S): (1—:0 )[1_V (S*)] .
EW)[s— A+ AX(G (s))]

8.3)

Next, let W be the waiting time of an arbitrary customer in a batch and de-
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note by W'(s) the LST of W.If j>1 is the position of the customer within ar-
rival batch, then

/

Jj-1
W=W,+3G; j>1, (8.4)

i=1
where G! denotes the difference between modified service time and inter arrival
time of the i customer in the batch.

If y; is the probability of an arbitrary customer being the j-th position of an

arriving batch , then applying the results of Chaudhry and Templeton [4] (see
Chapter 3), we may write

j-1 o -
P[>.G/ <t]=Y z,GOYU™";

i=1 Jj=1

Jj-1
where G(t)=P,[G] <t] and y; =(1- a,)/E(X).

i=1
Consequently taking LST of (8.4), we get on simplification
W(s)=E[e*Y].

Bl 5

_W ) 1-XG 6
E(X)" [1-G'(s)]

and therefore LST of the waiting time distribution in the queue for this model is
given by

W (s) = [1-V (9[- X(G ()]

= - o (8.5)
EX)E(V)[s—A+AX(G (s)]1-G ()]

Note that for p =0our equation (8.5) is consistent with the result obtained by

Baba [2]. However our method of derivation is completely different from him.
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