• Title/Summary/Keyword: base material

Search Result 1,924, Processing Time 0.033 seconds

Effect of additives on the electrical properties of W/WC contacts (W/WC계 접점의 전기적 특성에 미치는 첨가물의 영향)

  • 신대승;이희웅;변우봉;한세원
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1988.10a
    • /
    • pp.112-114
    • /
    • 1988
  • W/WC-Cu/Ag contacts of 60wt%-40wt% base and contacts with additives(Ni, Co, C) of 1wt% below were prepared by a press-sinter-infiltrate process to compare with their physical properties and arc erosion characteristics. In physical properties, electrical conductivity of contacts with additive is lower than that of base contacts but hardness is higher. The results of arc test show that the erosion rate of contact with -0.1wt% Ni is decreased.

  • PDF

A Preliminary Study on the Development of a High Elastic Modulus and Low-Shrinkage Roller-Compacted Concrete Base for Composite Pavement (복합포장용 고탄성 저수축 롤러전압콘크리트 기층 개발을 위한 기초연구)

  • Chung, Gun Woo;Lee, Seung Woo
    • International Journal of Highway Engineering
    • /
    • v.19 no.1
    • /
    • pp.45-52
    • /
    • 2017
  • PURPOSES : The main purpose of this study is to develop a high elastic modulus and low-shrinkage roller-compacted concrete base (RCCB) in order to prevent fatigue cracking and reflective cracking in the asphalt surface layer of composite pavement. Using a rigid base material with low shrinkage can be a solution to this problem. Moreover, a strong rigid base with high elastic modulus is able to shift the location of critical tensile strain from the bottom of the asphalt layer to the bottom of the rigid base layer, which can prevent fatigue cracking in the asphalt layer. METHODS : Sensitivity analysis of composite pavement via numerical methods is implemented to determine an appropriate range of elastic modulus of the rigid base that would eliminate fatigue cracking. Various asphalt thicknesses and elastic moduli of the rigid base are used in the analysis to study their respective influences on fatigue cracking. Low-shrinkage RCC mixture, as determined via laboratory testing with various amounts of a CSA expansion agent (0%, 7%, and 10%), is found to achieve an appropriate low-shrinkage level. Shrinkage of RCC is measured according to KS F 2424. RESULTS : This study shows that composite pavements comprising asphalt thicknesses of (h1) 2 in. with E2 > 19 GPa, 4 in. with E2 > 15 GPa, and 6 in. with E2 > 11 GPa are able to eliminate tensile strain in the asphalt layer, which is the cause of fatigue cracking in this layer. Shrinkage test results demonstrate that a 10% CSA RCC mixture can reduce shrinkage by 84% and 93% as compared to conventional RCC and PCC, respectively. CONCLUSIONS : According to the results of numerical analyses using various design inputs, composite pavements are shown to be able to eliminate fatigue cracking in composite pavement. Additionally, an RCC mixture with 10% CSA admixture is able to reduce or eliminate reflective cracking in asphalt surfaces as a result of the significant shrinkage reduction in the RCC base. Thus, this low-shrinkage base material can be used as an alternative solution to distresses in composite pavement.

Dissolution Phenomenon of the Base Metal during TLP Bonding Using the Modified Base Metal Powder and Ni Base Filler Metal Powder (유사 조성의 모재분말과 Ni기 삽입금속 혼합분말을 사용한 천이액상확산 접합 시 모재의 용해현상)

  • Song, Woo-Young;Ye, Chang-Ho;Kang, Chung-Yun
    • Journal of Welding and Joining
    • /
    • v.25 no.3
    • /
    • pp.64-71
    • /
    • 2007
  • The dissolution phenomenon of the solid phase powder and base metal by liquid phase insert metal during Transient Liquid Phase bonding using the mixed powder composed of the modified GTD111(base metal) powder and the GNi3 (Ni-l4Cr-9.5Co-3.5Al-2.5B) powder was investigated. In case of the mixed powder contains modified GTD111 powder 50wt%, all of the powder was melted by liquid phase at 1423K. At the temperature between solidus and liquidus of GNi3, liquid phase penetrated into the boundary of the modified GTD111 powder and solid particle separated from powder was melted easily because area of reaction was increased. With increasing mixing ratio of the modified GTD111, it needed the higher temperature to melt all of the modified GTD111 powder. During Transient Liquid Phase bonding using the mixed powder composed of the modified GTD111 50wt% and GNi3 50wt% as insert metal, width of the bonded interlayer was increased with increasing bonding temperature by reaction of the base metal and liquid phase in insert metal. Dissolution of the base metal and modified powder by liquid phase progressed all together and after all of the powder was melted nearly, the dissolution of the base metal occurred quickly.

A hybrid artificial intelligence and IOT for investigation dynamic modeling of nano-system

  • Ren, Wei;Wu, Xiaochen;Cai, Rufeng
    • Advances in nano research
    • /
    • v.13 no.2
    • /
    • pp.165-174
    • /
    • 2022
  • In the present study, a hybrid model of artificial neural network (ANN) and internet of things (IoT) is proposed to overcome the difficulties in deriving governing equations and numerical solutions of the dynamical behavior of the nano-systems. Nano-structures manifest size-dependent behavior in response to static and dynamic loadings. Nonlocal and length-scale parameters alongside with other geometrical, loading and material parameters are taken as input parameters of an ANN to observe the natural frequency and damping behavior of micro sensors made from nanocomposite material with piezoelectric layers. The behavior of a micro-beam is simulated using famous numerical methods in literature under base vibrations. The ANN was further trained to correlate the output vibrations to the base vibration. Afterwards, using IoT, the electrical potential conducted in the sensors are collected and converted to numerical data in an embedded mini-computer and transferred to a server for further calculations and decision by ANN. The ANN calculates the base vibration behavior with is crucial in mechanical systems. The speed and accuracy of the ANN in determining base excitation behavior are the strengths of this network which could be further employed by engineers and scientists.

A Study on the Breakdown Voltage Characteristics with Process and Design Parameters in Trench Gate IGBT (트렌치 게이트 IGBT 에서의 공정 및 설계 파라미터에 따른 항복 전압 특성에 관한 연구)

  • Shin, Ho-Hyun;Lee, Han-Sin;Sung, Man-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.5
    • /
    • pp.403-409
    • /
    • 2007
  • In this paper, effects of the trench angle($\theta$) on the breakdown voltage according to the process parameters of p-base region and doping concentrations of n-drift region in a Trench Gate IGBT (TIGBT) device were analyzed by computer simulation. Processes parameters used by variables are diffusion temperature, implant dose of p-base region and doping concentration of n-drift region, and aspects of breakdown voltage change with change of each parameter were examined. As diffusion temperature of the p-base region increases, depth of the p-base region increases and effect of the diffusion temperature on the breakdown voltage is very low in the case of small trench angle($45\;^{\circ}$) but that is increases 134.8 % in the case of high trench angle($90\;^{\circ}$). Moreover, as implant dose of the p-base region increases, doping concentration of the p-base region increases and effect of the implant dose on the breakdown voltage is very low in the case of small trench angle($45\;^{\circ}$) but that is increases 232.1 % in the case of high trench angle($90\;^{\circ}$). These phenomenons is why electric field concentrated in the trench is distributed to the p-base region as the diffusion temperature and implant dose of the p-base increase. However, effect of the doping concentration variation in the n-drift region on the breakdown voltage varies just 9.3 % as trench angle increases from $45\;^{\circ}$ to $90\;^{\circ}$. This is why magnitude of electric field concentrated in the trench changes, but direction of that doesn't change. In this paper, respective reasons were analyzed through the electric field concentration analysis by computer simulation.

A Study about Materialism in Fashion and Arte Povera - Focusing on Italian Fashion in the 1960s and beyond - (패션과 Arte Povera에 표현된 물질성 - 1960년대와 이후 이탈리아 패션을 중심으로 -)

  • Lee, Yoon-Kyung;Kim, Min-Ja
    • Journal of the Korean Society of Costume
    • /
    • v.59 no.4
    • /
    • pp.126-142
    • /
    • 2009
  • Arte Povera, which was started centering around of Italy in 1960, made a great sensation using by base materials in the works that were totally different from other artists' work. Beginning of Arte Povera was just starting of Base Materialism and it was a reconsideration about the life's authenticity in material civilization. Arte Povera carried worthless materials, which were overlook or ignored in the life, into the gallery. In this study, records and Arte Povera Group's works was studied. The outcome of Arte Povera's materialism was used to an analysis of fashion designers' works. It shows how to explain Arte povera's materialism in fashion designers' works in 1960s and since 1990. Materialism in fashion is expanding from constructed materials of the clothing to the body. The expression method is getting various and complex. As if 1960s' art was, modern fashion is getting one of the testing places for the Ideology. It is getting out of the boundary of the utility as fashion art by using materials. So a function of the clothing is expending including wareing. The same expression methods of the materialism between fashion and art are as follow: First, revealing silhouette or materialism of the body or material as formless material. Second, an expression method as Base Materialism from a raw material. Third, the mobility and the transformation, which are a changeable characteristic according to a place, a space and an audience.

A CLINICAL STUDY ON THE RETENTION OF MAXILLARY COMPLETE DENTURE WITH DIFFERENT DENTURE BASE MATERIALS (의치상의 종류에 따른 상악 의치상의 유지력에 관한 임상적 연구)

  • Lee Jong-Hyuk;Lim Ju-Hwan;Cho In-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.39 no.1
    • /
    • pp.58-70
    • /
    • 2001
  • For the successful treatment of complete denture, obtaining a good retention is essential. There are lots of factors affecting denture retention. Denture material, one of those factors affecting denture retention, was the subject of this study, and internal surface treatment also considered for the method of enhancing denture retention. Two resin(Lucitone $199^{(R)}$(heat cured resin) Vertex $CP^{(R)}$(self cured resin)) and two metal($Biosil^{(R)}$(Co-Cr alloy), $Vitallium^{(R)}$(Co-Cr alloy)) denture base materials were used for making test denture base. Newly developed device was used for measuring denture retention. After the retention was measured. We treated internal surface of test denture base with $50{\mu}m\;Al_2O_3$ powder, under 90psi, for 1 minute. Then the retention was measured again. The result was analyzed with K-S test, one-way ANOVA test and independent t-test to deter mine the significant differences as the 95% level of confidence. The results are as follows : In cases of without internal surface treatment, the retention was increased in order of $Vitallium^{(R)},\;Biosil^{(R)},\;Vertex CP^{(R)}$ and Lucitone $199^{(R)}$. Except between Vertex $CP^{(R)}$ and $Biosil^{(R)}$, retention of the other materials was significantly different (p<0.05). After the treatment of internal surface, the retention was increased in order of $Vitallium^{(R)},\;Biosil^{(R)},\;Lucno\;199^{(R)},\;Vertex\;CP^{(R)}$. Except between Lucitone $199^{(R)}$ and Vertex $CP^{(R)}$, $Vitallium^{(R)}$ and $Biosil^{(R)}$ the retention of remaining groups was significantly different each other (p<0.05). In the matter of each material, after the internal surface treatment the retention was increased with Vertex $CP^{(R)},\;Biosil^{(R)}\;and\;Vitallium^{(R)}$ and the value of differences were statistically significant. When we compare the retention of resin and metal denture base, the retention of both denture bases increased significantly with internal surface treatment, and resin denture base showed better retention. As the results show, selecting denture base material could be an important choice of complete denture treatment. To increase denture retention, internal surface treatment can be considered as a possible method.

  • PDF

Impact of ZrO2 nanoparticles addition on flexural properties of denture base resin with different thickness

  • Albasarah, Sara;Al Abdulghani, Hanan;Alaseef, Nawarah;al-Qarni, Faisal D.;Akhtar, Sultan;Khan, Soban Q.;Ateeq, Ijlal Shahrukh;Gad, Mohammed M.
    • The Journal of Advanced Prosthodontics
    • /
    • v.13 no.4
    • /
    • pp.226-236
    • /
    • 2021
  • PURPOSE. This study aimed to evaluate the effect of incorporating zirconium oxide nanoparticles (nano-ZrO2) in polymethylmethacrylate (PMMA) denture base resin on flexural properties at different material thicknesses. MATERIALS AND METHODS. Heat polymerized acrylic resin specimens (N = 120) were fabricated and divided into 4 groups according to denture base thickness (2.5 mm, 2.0 mm, 1.5 mm, 1.0 mm). Each group was subdivided into 3 subgroups (n = 10) according to nano-ZrO2 concentration (0%, 2.5%, and 5%). Flexural strength and elastic modulus were evaluated using a three-point bending test. One-way ANOVA, Tukey's post hoc, and two-way ANOVA were used for data analysis (α = .05). Scanning electron microscopy (SEM) was used for fracture surface analysis and nanoparticles distributions. RESULTS. Groups with 0% nano-ZrO2 showed no significant difference in the flexural strength as thickness decreased (P = .153). The addition of nano-zirconia significantly increased the flexural strength (P < .001). The highest value was with 5% nano-ZrO2 and 2 mm-thickness (125.4 ± 18.3 MPa), followed by 5% nano-ZrO2 and 1.5 mm-thickness (110.3 ± 8.5 MPa). Moreover, the effect of various concentration levels on elastic modulus was statistically significant for 2 mm thickness (P = .001), but the combined effect of thickness and concentration on elastic modulus was insignificant (P = .10). CONCLUSION. Reinforcement of denture base material with nano-ZrO2 significantly increased flexural strength and modulus of elasticity. Reducing material thickness did not decrease flexural strength when nano-ZrO2 was incorporated. In clinical practice, when low thickness of denture base material is indicated, PMMA/nano-ZrO2 could be used with minimum acceptable thickness of 1.5 mm.

Effect of Coating Thickness on Microstructures and Tensile Properties in Yb:YAG Disk Laser Welds of Al-Si Coated Boron Steel (Al-Si 용융 도금된 보론강의 Yb:YAG 디스크 레이저 용접부의 미세조직과 인장성질에 미치는 도금두께의 영향)

  • Cao, Wei-Ye;Kong, Jong-Pan;Ahn, Yong-Nam;Kim, Cheol-Hee;Kang, Chung-Yun
    • Journal of Welding and Joining
    • /
    • v.31 no.3
    • /
    • pp.66-75
    • /
    • 2013
  • In this study, the effect of coating thickness($20{\mu}m$ and $30{\mu}m$) on microstructure and tensile properties in Yb:YAG disk laser welds of Al-Si-coated boron steel (1.2mmt) was investigated. In the case of as welds, the quantity of ferrite was found to be higher in base metal than that in HAZ (Heat Affected Zone) and fusion zone, indicating, fracture occurrs in base metal, and the fracture position is unrelated to the coating thickness. Furthermore, yield strength, tensile strength of base metal and welded specimens showed similar behavior whereas elongation was decreased. On the other hand, base metal and HAZ showed existence of martensite after heat treatment, the fusion zone indicated the presence of full ferrite or austenite and ferrite during heat treatment ($900^{\circ}C$, 5min), After water cooling, austenite was transformed to martensite, and the quantity of ferrite in fusion zone was higher as compared with in base metal, resulting in sharply decrease of yield strength, tensile strength and elongation, which leads to fracture occured at fusion zone. In particular, results showed that because the concentration of Al was higher in 30um coating layer specimen than that of 20um coating specimen, after heat treatment, producing a higher quantity of ferrite was higher after heat treatment in the fusion zone; howevers, it leads to a lower tensile property.

Microstructure and Tensile Strength Property of Arc Brazed DP steel using Cu-Sn Insert Metal (Cu-Sn 삽입금속을 이용한 DP강의 아크 브레이징 접합부의 미세조직과 인장특성)

  • Cho, Wook-Je;Cho, Young-Ho;Yun, Jung-Gil;Kang, Chung-Yun
    • Journal of Welding and Joining
    • /
    • v.31 no.1
    • /
    • pp.58-64
    • /
    • 2013
  • The following results were obtained, microstructures and tensile properties in arc brazed joints of DP(dual phase) steel using Cu-5.3wt%Sn insert metal was investigated as function of brazing current. 1) The Fusion Zone was composed of ${\alpha}Fe+{\gamma}Cu$ and Cu23Sn2. The reason for the formation of these solid solutions. Despite, Fe & Cu were impossible to solid solution at room temperature. It's melting & reaction to something of insert metal & Base Metal (DP Steel) by Arc. Brazing Process has faster cooling rate then Cast Process, Supersaturated solid solution at room temperature. 2) The increase Hardness of Fusion Zone was directly proportional to the rise of welding current. Because, ${\alpha}Fe+{\gamma}Cu$ phase (higher hardness than the Cu23Sn2.(104.1Hv < 271.9Hv)) Volume fraction was Growth, due to increasing the amount of base metal melting by High current. 3) The results of tensile shear test by Brazing, All specimens happen to fracture in Fusion Zone. On the other hand, when Brazing Current increasing tend to rise tensile load. but it was very small, about 26-30% of the base metal. 4) The result of fracture analysis, The crack initiate at Triple Point for meet to Upper B.M/Under B.M/Fusion Zone. This Crack propagated to Fusion zone. So ruptured by tensile strength. The Reason to in the fusion zone fracture, Fusion zone by Brazing of hardness (strength) was very lower then the base metal (DP steel). In addition the Fusion Zone's thickness in triple point was thin than the base metal's thickness in triple point.