• Title/Summary/Keyword: barrier function

Search Result 593, Processing Time 0.02 seconds

Laser-Induced Fluorescence Excitation Spectrum and $CF_3$ Torsional Potential Energy Function of 7-Amino-4-(trifluoromethyl)coumarin in Its $S_1$ Electrode Excited State

  • 추재범;김택수;최영식
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.5
    • /
    • pp.461-463
    • /
    • 1996
  • The laser-induced fluorescence excitation spectrum of 7-amino-4-(trifluoromethyl)coumarin in a supersonic jet has been recorded in the 340-352 nm region. The electronic band origin was observed at 28622.8 cm-1. Vibrational assignments for the three fundamental low-frequency modes and eight combination bands have been made for the S1 electronic excited state. The out-of-plane vibrations of this molecule have been characterized from the low-frequency assignments of the spectrum. The periodic potential energy function for the CF3 torsion, which satisfactorily fits the observed data, were also determined to be V(Φ)=95X(1-cos3Φ)-32X(1-cos6Φ) where Φ is the torsional angle. The relatively low torsional barrier of 99 cm-1 in S1 state could be explained by the small steric interactions between the functional groups attached to a bicyclic ring.

Hypertension and cognitive dysfunction: a narrative review

  • Eun-Jin Cheon
    • Journal of Yeungnam Medical Science
    • /
    • v.40 no.3
    • /
    • pp.225-232
    • /
    • 2023
  • Cognitive dysfunction is relatively less considered a complication of hypertension. However, there is sufficient evidence to show that high blood pressure in middle age increases the risk of cognitive decline and dementia in old age. The greatest impact on cognitive function in those with hypertension is on executive or frontal lobe function, similar to the area most damaged in vascular dementia. Possible cognitive disorders associated with hypertension are vascular dementia, Alzheimer disease, and Lewy body dementia, listed in decreasing strength of association. The pathophysiology of cognitive dysfunction in individuals with hypertension includes brain atrophy, microinfarcts, microbleeds, neuronal loss, white matter lesions, network disruption, neurovascular unit damage, reduced cerebral blood flow, blood-brain barrier damage, enlarged perivascular damage, and proteinopathy. Antihypertensive drugs may reduce the risk of cognitive decline and dementia. Given the high prevalence of dementia and its impact on quality of life, treatment of hypertension to reduce cognitive decline may be a clinically relevant intervention.

Defects and Electrical Properties of ZnO-Bi2O3-Mn3O4-Co3O4 Varistor (ZnO-Bi2O3-Mn3O4-Co3O4 바리스터의 결함과 전기적 특성)

  • Hong, Youn-Woo;Lee, Young-Jin;Kim, Sei-Ki;Kim, Jin-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.12
    • /
    • pp.961-968
    • /
    • 2012
  • In this study, we have investigated the effects of Mn and Co co-doping on defects, J-E curves and grain boundary characteristics of ZnO-$Bi_2O_3$ (ZB) varistor. Admittance spectra and dielectric functions show two bulk defects of $Zn_i^{{\cdot}{\cdot}}$ (0.17~0.18 eV) and $V_o^{\cdot}$ (0.30~0.33 eV). From J-E characteristics the nonlinear coefficient (${\alpha}$) and resistivity (${\rho}_{gb}$) of pre-breakdown region decreased as 30 to 24 and 5.1 to 0.08 $G{\Omega}cm$ with sintering temperature, respectively. The double Schottky barrier of grain boundaries in ZB(MCo) ($ZnO-Bi_2O_3-Mn_3O_4-Co_3O_4$) could be electrochemically single type. However, its thermal stability was slightly disturbed by ambient oxygen because the apparent activation energy of grain boundaries was changed from 0.64 eV at lower temperature to 1.06 eV at higher temperature. It was revealed that a co-doping of Mn and Co in ZB reduced the heterogeneity of the barrier in grain boundaries and stabilized the barrier against an ambient temperature (${\alpha}$-factor= 0.136).

Artificial Injection to Control Saltwater Intrusion in Groundwater-Numerical Study on a Vertical Cross Section (지하수 해수쐐기 제어를 위한 인공주입-연직 2차원 단면 수치실험)

  • Hong, Sung-Hoon;Shi, Lei;Cui, Lei;Park, Nam-Sik
    • The Journal of Engineering Geology
    • /
    • v.19 no.2
    • /
    • pp.131-138
    • /
    • 2009
  • A simulation-optimization model is developed for development of groundwater and control of a saltwater wedge for protecting over-exploiting freshwater pumping wells. To achieve the goal an objective function is developed for three types of wells: freshwater pumping, freshwater injection and saltwater pumping. Integrity of groundwater environment is accounted for by including three indices. Illustrative cross-sectional examples show that both types of barriers can protect freshwater pumping wells from saltwater intrusion. A barrier well operating at the same rate located anywhere within a certain reach can protect a pumping well. However, the location of the reach appears to contradict the common practice of barrier placements. Consideration of the groundwater environment yields a unique optimal location for barrier wells.

Preparation and Characterization of High Density Polyethylene (HDPE)/Exfoliated Graphite (EFG) Nanocomposite Films (High Density Polyethylene (HDPE) / Exfoliated Graphite (EFG) 나노복합필름 제조와 특성에 관한 연구)

  • Kwon, Hyok;Kim, Dowan;Seo, Jongchul
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.19 no.2
    • /
    • pp.95-102
    • /
    • 2013
  • Exfoliated graphite (EFG) with high aspect ratio was incorporated with high density polyethylene (HDPE) for use as high barrier packaging material such as water-sensitivity electric product and pharmaceutical packaging. Also HDPE/EFG nanocomposite films were prepared by adding the compatibilizer for effective dispersion and compatibility. Their chemical properties, crystal structure properties, thermal properties and water barrier properties of as-prepared HDPE/EFG nanocomposite films were investigated as a function of EFG contents. It showed that there is a weak interfacial interaction between HDPE and EFG, however, the water vapor permeations were decreased from 127 to 78 (70 ${\mu}m{\cdot}g/m^2$, $day{\cdot}atm$) by addition of EFG. Especially, the physical properties of HDPE/EFG nanocomposite films were effectively increased up to 0.5 wt%, however, there were no significant improvement of properties in nanocomposite films at the additional EFG loading. To maximize their performance of the nanocomposite films, further research is required to enhance the dispersion of EFG and compatibility of EFG in HDPE matrix.

  • PDF

Electrical Properties of ZnO-Bi2O3-Co3O4 Varistor (ZnO-Bi2O3-Co3O4 바리스터의 전기적 특성)

  • Hong, Youn-Woo;Shin, Hyo-Soon;Yeo, Dong-Hun;Kim, Jin-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.11
    • /
    • pp.882-889
    • /
    • 2011
  • In this study, we have investigated the effects of Co doping on I-V curves, bulk trap levels and grain boundary characteristics of ZnO-$Bi_2O_3$ (ZB) varistor. From I-V characteristics the nonlinear coefficient (a) and the grain boundary resistivity (${\rho}_{gb}$) decreased as 32${\rightarrow}$22 and 18.4${\rightarrow}0.6{\times}10^9{\Omega}cm$ with sintering temperature (900~1,300$^{\circ}C$), respectively. Admittance spectra and dielectric functions show two bulk traps of zinc interstitial, $Zn_i^{{\cdot}{\cdot}}$(0.16~0.18 eV) and oxygen vacancy, $V_o^{{\cdot}}$ (0.28~0.33 eV). The barrier of grain boundaries in ZBCo (ZnO-$Bi_2O_3-Co_3O_4$) could be electrochemically single type. However, its thermal stability was slightly disturbed by ambient oxygen because the apparent activation energy of grain boundaries was changed from 0.93 eV at the 460~580 K to 1.13 eV at the 620~700 K. It is revealed that Co dopant in ZB reduced the heterogeneity of the barrier in grain boundaries and stabilized the barrier against the ambient temperature.

Additional use of autogenous periosteal barrier membrane combined with regenerative therapy in the interproximal intrabony defects: case series (치간부 골내낭의 치주재생치료에서 골막이식의 부가적 사용 증례)

  • Kim, Hyun-Joo;Kim, Hyung-min;Lee, Ju-Youn
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.33 no.3
    • /
    • pp.230-237
    • /
    • 2017
  • Regenerative therapy in an interproximal intrabony defect is a challenge due to unaesthetic appearance after surgery. In this article, we introduce a case series of additional use of autogenous periosteal barrier membrane combined with bovine bone mineral and enamel matrix derivative (EMD) in interproximal periodontal intrabony defects to overcome an aforementioned shortcoming. During the periodontal regenerative surgery, autogenous periosteal membrane was additionally adopted besides xenograft material and EMD. Clinical and radiographic examinations were performed before surgery and 6 months after surgical treatment. All clinical parameters were improved and the intrabony defects were resolved on the radiography 6 months after surgery. Moreover, soft tissue esthetics such as the contour of interdental papilla was better than that of conventional regenerative therapy. Periodontal regenerative therapy using several graft materials and bioactive materials was effective in the treatment of periodontal intrabony defect. Moreover, using of autogenous periosteal barrier membrane combined with xenograft and EMD has additional effect for the treatment of an interproximal intrabony defect in terms of augmentation of interdental soft tissue volume.

Molybdenum Oxides as Diffusion Barrier Layers against MoSe2 Formation in A Nonvacuum Process for CuInSe2 Solar Cells (비진공법 CuInSe2 태양전지에서 MoSe2의 생성을 억제하기 위한 산화 몰리브데늄 확산장벽 층)

  • Lee, Byung-Seok;Lee, Doh-Kwon
    • Current Photovoltaic Research
    • /
    • v.3 no.3
    • /
    • pp.85-90
    • /
    • 2015
  • Two-step processes for preparing $Cu(In,Ga)Se_2$ absorber layers consist of precursor layer formation and subsequent annealing in a Se-containing atmosphere. Among the various deposition methods for precursor layer, the nonvacuum (wet) processes have been spotlighted as alternatives to vacuum-based methods due to their potential to realize low-cost, scalable PV devices. However, due to its porous nature, the precursor layer deposited on Mo substrate by nonvacuum methods often suffers from thick $MoSe_2$ formation during selenization under a high Se vapor pressure. On the contrary, selenization under a low Se pressure to avoid $MoSe_2$ formation typically leads to low crystal quality of absorber films. Although TiN has been reported as a diffusion barrier against Se, the additional sputtering to deposit TiN layer may induce the complexity of fabrication process and nullify the advantages of nonvacuum deposition of absorber film. In this work, Mo oxide layers via thermal oxidation of Mo substrate have been explored as an alternative diffusion barrier. The morphology and phase evolution was examined as a function of oxidation temperature. The resulting Mo/Mo oxides double layers were employed as a back contact electrode for $CuInSe_2$ solar cells and were found to effectively suppress the formation of $MoSe_2$ layer.

Drain Induced Barrier Lowering(DIBL) SPICE Model for Sub-10 nm Low Doped Double Gate MOSFET (10 nm 이하 저도핑 DGMOSFET의 SPICE용 DIBL 모델)

  • Jung, Hakkee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.8
    • /
    • pp.1465-1470
    • /
    • 2017
  • In conventional MOSFETs, the silicon thickness is always larger than inversion layer, so that the drain induced barrier lowering (DIBL) is expressed as a function of oxide thickness and channel length regardless of silicon thickness. However, since the silicon thickness is fully depleted in the sub-10 nm low doped double gate (DG) MOSFET, the conventional SPICE model for DIBL is no longer available. Therefore, we propose a novel DIBL SPICE model for DGMOSFETs. In order to analyze this, a thermionic emission and the tunneling current was obtained by the potential and WKB approximation. As a result, it was found that the DIBL was proportional to the sum of the top and bottom oxide thicknesses and the square of the silicon thickness, and inversely proportional to the third power of the channel length. Particularly, static feedback coefficient of SPICE parameter can be used between 1 and 2 as a reasonable parameter.

Built-in voltage in organic light-emitting diodes from the measurement of modulated photocurrent (변조 광전류 측정법을 이용하여 전극 변화에 따른 유기발광소자의 내장 전압)

  • Lee, Eun-Hye;Yoon, Hee-Myoung;Han, Wone-Keun;Kim, Tae-Wan;Ahn, Joon-Ho;Oh, Hyun-Seok;Jang, Kyung-Uk;Chung, Dong-Hoe
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.51-52
    • /
    • 2007
  • Built-in voltage in organic light-emitting diodes was studied using modulated photocurrent technique ambient conditions. From the bias voltage-dependent photocurrent, built-in voltage of the device is determined. The applied bias voltage when the magnitude of modulated photo current is zero corresponds to a built-in voltage. Built-in voltage in the device is generated due to a difference of work function of the anode and cathode. A device was made with a structure of anode/$Alq_3$/cathode to study a built-in voltage. ITO and ITO/PEDOT:PSS were used as an anode, and Al and LiF/AI were used as a cathode. It was found that an incorporation of PEDOT:PSS layer between the ITO and $Alq_3$ increases a built-in voltage by about 0.4V. This is consistent to a difference of a highest occupied energy states of ITO and PEDOT:PSS. This implies that a use of PEDOT:PSS layer in anode improves the efficiency of the device because of a lowering of anode barrier height. With a use bilayer cathode system LiF/Al, it was found that the built-in voltage increases as the LiF layer thickness increases in the thickness range of 0~1nm. For 1nm thick LiF layer, there is a lowering of electron barrier by about 0.2eV with respect to an Al-only device. It indicates that a very thin alkaline metal compound LiF lowers an electron barrier height.

  • PDF