• Title/Summary/Keyword: bar spacing

Search Result 94, Processing Time 0.027 seconds

Proposed Design Provisions for Development Length Considering Effects of Confinement

  • Choi, Oan-Chul;Kim, Byoung-Kook
    • International Journal of Concrete Structures and Materials
    • /
    • v.18 no.1E
    • /
    • pp.49-54
    • /
    • 2006
  • Confinement is major contribution to bond strength between reinforcement steel bars and concrete. Cover thickness, bar spacing and transverse reinforcement are the key confinement factors of current provisions for the development and splices of reinforcement. However, current provisions are still too complicated to determine the values of the confinement, which need to be well delineated in the process of design. In this study, an experimental work using beam-end and splice specimens was performed to examine the effect of concrete cover on bond strength. The results of this experiment and previously available data are analyzed to identify the effects of confinement on bond strength. From this reevaluation, new provisions for the development and splices of reinforcement are proposed. The provisions suggest some limitations in the confinement index. The new provisions will allow the engineers to use a simple and yet satisfactory and appropriate method or a precise approach for design to determine the values of confinement on the calculation of development and splice lengths.

Experimental Study for Ferrofluid Couette Flow between Two Coaxial Spheres (동축 구 사이의 자성 유체의 Couette 유동에 관한 연구)

  • 구도연;하옥남;전운학
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.3
    • /
    • pp.1-9
    • /
    • 1996
  • This study investigated torque characteristics for Couette flow experimentally under circumstaces that ferrofluids were between two coaxial spheres. Torque measurement was obtained for the situation where the inner sphere was rotating while the outer sphere was kept stationary. The magnetic field was imposed on the fluid, using a bar magnet which was inserted in the inner sphere. In the laminar flow region the torque increase when the magnetic field is applied and the critical Reynolds number is increased. However, in the transition regime, the effect of the magnetic field on the torque characteristics decrease as Reynolds number increases. The value of torque were the same as those of glycerine solution beyond the cirtical Reynolds number. We also made experimental equation which could obtain coefficient of torque within critical Reynolds number in terms of sphere spacing Reynolds number and magnetic properties of ferrofluid.

  • PDF

Zone-Melting Recrystallization of Si Films on $SiO_2$ with a Graphite-Strip-Heater (흑연 막대 발열체를 이용한 SOI구조의 Zone-melting 재결정화 연구)

  • 김현수;김춘근;민석기
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.4
    • /
    • pp.527-533
    • /
    • 1990
  • Zone-melting recrystallization (ZMR) system using two graphite heaters(a stationary sheet and a narrow movable bar) was constructed and implemented in recrystallization op Si films on insulating layers. The recystallized Si films were examined by Nomarski contrast optical microscopy after Dash etching, transmission electron diffraction pattern, and x-ray diffraction. With optimum conditions of process parameters(input powers of the bottom and upper heater, scanning speed of the upper heater, and the gap between sample and upper heater), the recrystallized Si layer has a (100) texture, but contains many subboundaries. The subgrains are misoriented by < 0.5\ulcorner and the average spacing between subboundaries is about 25\ulcorner.

  • PDF

Effect of Fin Spacings on Air-side Heat Transfer in Louvered Fin Heat Exchangers (핀 간격(間隔)이 루우버핀 열교환기(熱交換器)의 공기측(空氣側) 열전달(熱傳達)에 미치는 영향(影響))

  • Kim, S.J.;Chung, T.H.;Kwon, S.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.2 no.4
    • /
    • pp.288-294
    • /
    • 1990
  • A study has been conducted experimentally on heat transfer characteristics of louvered fin heat exchangers with various fin spacings in air. The experimental results are as follows; 1. Mean heat transfer coefficient is increased with increasing air velocity and the optimum fin spacing shows at S=5mm. 2. Pressure drop is increased with increasing air velocity and its maximum value shows at S=3.5mm and its minimum value shows at S=6mm. 3. $\bar{h}/{\Delta}P$ is decreased with increasing air velocity and its maximum value shows at S=5mm and its minimum value shows at S=3.5mm.

  • PDF

Effects of Spacing Words on Reading Adnominal Eojeol (띄어쓰기가 관형어절 이해에 미치는 영향)

  • Kim, Jihye;Nam, Kichun
    • Annual Conference on Human and Language Technology
    • /
    • 2009.10a
    • /
    • pp.251-254
    • /
    • 2009
  • 띄어쓰기는 한글 맞춤법에 명시되어 있는 규정에 따르면 되지만, 근본적으로 명확한 정의가 내려있지 않으며 복잡하고 애매모호한 기준들이 얽혀 사용자들이 혼란을 겪는 등 많은 오류를 일으키고 있다. 이에 맞춤법 오류에 대한 원인을 찾아 체계적인 교육이 이루어지거나, 맞춤법을 수정 및 보완할 필요성이 있다 하겠다. 본 연구는 사용자들의 편의성을 우선시하여 맞춤법에 있어 논리적 근거를 마련하고 한국어 정보처리의 양상을 살펴보는 것에 의의가 있다. 이에 비교적 띄어쓰기 기준이 명확한 관형어절에 초점을 두어 띄어쓰기가 읽기에 어떤 영향을 미치는지 알아보고자 실시하였다. '관형사 + 명사' 구조와 '~적 + 명사' 구조의 관형어절이 포함된 104개의 문장을 가지고 2개의 목록을 만들었다. 목록 간에는 띄어쓰기 여부가 반대이며 피험자는 목록 중 하나를 경험하였다. 하나의 문장을 끊어서 제시하여 피험자는 읽는 데로 space bar key를 누르는 자기 읽기 조절 과제를 시행하였고, 이어서 문장에 대한 질문을 통해 이해도 검사를 실시하였다. 관형어절을 읽는 평균 속도를 분석한 결과 미세한 차이가 있었으나, 유의미하지는 않았다. 이는 관형어절에 있어서 띄어쓰기의 영향이 크지 않음을 의미한다고 볼 수 있겠다.

  • PDF

Structural Behavior of RC Beam Strengthened with Steel Plate (강판 휨보강된 철근 콘크리트보의 구조적 거동)

  • 오병환;강동욱;조재열;채성태;이명규
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.04a
    • /
    • pp.598-604
    • /
    • 1997
  • In recent years, strengthening by epoxy-bonded steel plates, carbon fiber sheets, aramid fiber sheets and so on, is spotlighted. Among them, the method using steel plates is most widely applied. Most studies have dealt with strengthening by epoxy-bonded steel plates. However the actual behavior of strengthened RC beams are not well established. Particularly, the studies on the separation load thar affects failure load of the beam are relatively insufficient. In this study, test parameters are the magnitude of pre-load, plate length, plate thickness, existence and spacing of anchor bolt, the number of plate layer and the height of side strengthening, 17reinforced concrete beams are strengthened by steel plates according to test parameters. Deflection, failure load, strains of reinforcing bar, concrete and plate are measured from tests(4 points loading). The failure mode, and separation load are analyzed from these measured data. The difference between Robert's theory and test results is discussed, and the prediction equation for separation load in the case of rip off is proposed.

  • PDF

A FEA Study on the Bond Property according to the Rib-Shape of Reinforcement (철근 마디형상에 따른 부착특성에 관한 해석적 연구)

  • Mihn, Joon-Soo;Hong, Geon-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.2
    • /
    • pp.38-46
    • /
    • 2014
  • Effects of various parameters on bond property between reinforcing bar and concrete are investigated in many researchers, and various study is on going to improve the bond strength. Properties of interface between reinforcement and concrete is important role in bond property. This study analyzed the interfacial bond mechanism between deformed bar and concrete by finite element analysis (FEA) to evaluate the effect of rib shape. The FEA model in this study is simplified 2D plane stress model. The variables of analysis are selected by rib angle, rib height, rib spacing and relative rib area. From the results of analysis, reinforcing bars with rib angle $30{\sim}60^{\circ}$ showed better bond strength than the others. Bond strength ratio following to the rib height is proportionally increased up to the $0.12d_b$, but rib spacing has little effect on bond strength. The results also indicated that relative rib area can be efficiently represented the properties of deformed shape in reinforcing bars, and zigzagged rib height shape showed excellent bond strength increase.

Reduction of the Skin Friction Drag Using Transverse Cavities (횡 방향 공동을 이용한 마찰 저항 감소)

  • Kim, Chul-Kyu;Jeon, Woo-Pyung;Choi, Hae-Cheon
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.397-400
    • /
    • 2006
  • In this study, we experimentally investigate the possibility of skin-friction drag reduction by series of transverse cavities in a turbulent boundary layer flow. The effects of cavity depth (d), cavity length (l) and cavity spacing (s) on the skin friction drag are examined in the range of $Re_{\theta}\;=\;4030\;{\sim}\;7360$, $d/{\theta}_0\;=\;0.13\;{\sim}1.03$, l/d = 1 ~ 4 and s/d = 5 ~ 20. We perform experiments for twenty different cavity geometries and directly measure total drag force using in-house force measurement system. In most cases, the skin friction drag is increased. At several cases, however, small drag reduction is obtained. The variation of the skin ftiction drag is more sensitive to the cavity length than to the cavity depth or cavity spacing, and drag is reduced at $s/l\;{\geq}\;10$ and $l/{\theta}_0\;{\leq}\;0.26$ irrespective of the cavity depth. At $l/\bar{\theta}_0\;=\;0.13$ and s/l = 10, maximum 2% drag reduction is achieved. When the skin friction drag is reduced, there is little interaction between the flows inside and outside cavity, and the flow changed by the cavity is rapidly recovered at the following crest. A stable vortex is formed inside a cavity in the case of drag reduction. This vortex generates negative skin friction drag at the cavity bottom wall. Although there is form drag due to the cavity itself, total drag is reduced due to the negative skin friction drag.

  • PDF

Tension Stiffening Effect in Axially loaded Concrete Member Oncrete Member (축방향 인장을 받는 콘크리트 부재의 FRP 보강근의 인장강화 효과)

  • Nak Sup Jang;Chi Hoon Nho;Hongseob Oh
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.6
    • /
    • pp.47-54
    • /
    • 2023
  • In this study, the tensile behavior of concrete specimens reinforced with GFRP (Glass Fiber Reinforced Polymer), BFRP (Basalt Fiber Reinforced Polymer), and CFRP (Carbon Fiber Reinforced Polymer) bars was experimentally analyzed. The tensile strength of the FRP bars is appeared to be similar to the design strength, but the elastic modulus was somewhat lower. Additionally, the specimens for tension stiffening effect were manufacured using OPC (Ordinary Portland Cement) and SFRC (Steel Fiber Reinforced Concrete), with dimensions of 150(W)×150(B)×1000(H) mm. The crack spacing of specimens was most significant for GFRP reinforcement bars, which have a lower elastic modulus and a smoother surface, while BFRP and CFRP bars, with somewhat rougher surfaces and higher elastic moduli, showed similar crack spacings. In the load-strain relationship, GFRP bars exhibited a relatively abrupt behavior after cracking, whereas BFRP and CFRP bars showed a more stable behavior after the cracking phase, maintaining a certain level of tension stiffening effect. The tension stiffening index was somewhat smaller as the diameter increased, and GFRP, compared to BFRP, showed a higher tension stiffening index.

Calculation of Crack Width of the Top Flange of PSC Box Girder Bridge Considering Restraint Drying Shrinkage (구속 건조수축을 고려한 PSC BOX 거더교 상부플랜지 균열폭 산정)

  • Young-Ho Ku;Sang-Mook Han
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.3
    • /
    • pp.30-37
    • /
    • 2023
  • The PSCB girder bridge is a closed cross-section in which the top and bottom flanges and the web are integrated, and the structural characteristics are generally different from the bridges in which the girder and the floor plate are separated, so a maintenance plan that reflects the characteristics of the PSCB girder bridge is required. As a result of analyzing damage types by collecting detailed safety diagnosis reports of highway PSCB girder bridges, most of the deterioration and damage occurring during use is concentrated on the top flange. In particular, cracks in the bridge direction on the underside of the top flange occurred in about 70 % of the PSCB girder bridges to be analyzed, and these cracks were judged to be caused by indirect loads such as heat of hydration and drying shrinkage rather than structural cracks caused by external loads. In order to improve durability and reduce maintenance costs of PSCB girder bridges in use, it is necessary to control restraint drying shrinkage cracks from the design stage. Therefore, in this paper, the cracks caused by drying shrinkage under restraint, which is the main cause of cracks under the flanges of the top part of the PSCB girder bridge, were directly calculated using the Gilbert Model, and the influencing factors such as the amount of reinforcing bars, diameter and spacing of reinforcing bars were analyzed. As a result of the analysis, it was found that the crack width caused by restraint drying shrinkage exceeded the allowable crack width of 0.2 mm for reinforcing bars with a reinforcing bar ratio of 0.01 or less based on the H16 reinforcing bar and a reinforcing bar with a diameter greater than H19 based on the reinforcing bar ratio of 0.01. Finally, based on the results of the crack width review, a method for controlling the crack width of the top flange of the PSCB girder bridge was proposed.