• Title/Summary/Keyword: band-gap engineering

Search Result 731, Processing Time 0.026 seconds

Design and implementation of electromagnetic band-gap embedded antenna for vehicle-to-everything communications in vehicular systems

  • Kim, Hongchan;Yeon, KyuBong;Kim, Wonjong;Park, Chul Soon
    • ETRI Journal
    • /
    • v.41 no.6
    • /
    • pp.731-738
    • /
    • 2019
  • We proposed a novel electromagnetic band-gap (EBG) cell-embedded antenna structure for reducing the interference that radiates at the antenna edge in wireless access in vehicular environment (WAVE) communication systems for vehicle-to-everything communications. To suppress the radiation of surface waves from the ground plane and vehicle, EBG cells were inserted between micropatch arrays. A simulation was also performed to determine the optimum EBG cell structure located above the ground plane in a conformal linear microstrip patch array antenna. The characteristics such as return loss, peak gain, and radiation patterns obtained using the fabricated EBG cell-embedded antenna were superior to those obtained without the EBG cells. A return loss of 35.14 dB, peak gain of 10.15 dBi at 80°, and improvement of 2.037 dB max at the field of view in the radiation beam patterns were obtained using the proposed WAVE antenna.

Investigation of thermal annealing effects on the optical transparency and luminescent characteristics of Eu-doped Y2O3 thin films

  • Chung, Myun Hwa;Kim, Joo Han
    • Journal of Ceramic Processing Research
    • /
    • v.20 no.4
    • /
    • pp.431-435
    • /
    • 2019
  • The thermal annealing effects on the optical transparency and luminescent characteristics of the Eu-doped Y2O3 thin films have been investigated. The as-deposited Y2O3:Eu films exhibited an optical band gap of 5.78 eV with a transparency of 89 % at a wavelength of 550 nm. As the annealing temperature increased from 1000 to 1300 ℃, the optical band gap and transparency of the films decreased from 5.77 to 4.91 eV and from 86.8 to 64.5 % at 550 nm, respectively. The crystalline quality of the films was improved with increasing annealing temperature. The annealed Y2O3:Eu films emitted a red-color photoluminescence (PL) with the highest emission peak near 612 nm. The PL intensity was increased with increasing annealing temperature to 1200 ℃, resulting from the improvement in the crystalline quality of the films. The PL intensity was decreased with further increasing temperature above 1200 ℃ due to the formation of Y2SiO5 phase by the reaction of the film with the quartz substrate.

Finite Element Modeling for the Analysis of In- and Out-of-plane Bulk Elastic Wave Propagation in Piezoelectric Band Gap Structures (압전 밴드 갭 구조물의 면내·외 방향 체적 탄성파 전파 특성 해석을 위한 유한요소 모델링)

  • Kim, Jae-Eun;Kim, Yoon-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.8
    • /
    • pp.957-964
    • /
    • 2011
  • This investigation presents a finite element method to obtain the transmission properties of bulk elastic waves in piezoelectric band gap structures(phonon crystals) for varying frequencies and modes. To this end, periodic boundary conditions are imposed on a three-dimensional model while both in-plane and out-of-plane modes are included. In particular, the mode decoupling characteristics between in-plane and out-of-plane modes are identified for each electric poling direction and the results are incorporated in the finite element modeling. Through numerical simulations, the proposed modeling method was found to be a useful, effective one for analyzing the wave characteristics of various types of piezoelectric phononic band gap structures.

Multi-Band Internal Chip Antenna Using Multi-Layer Substrate for Mobile Handset (Multi-Layer 구조를 사용한 다중 대역 내장형 칩 안테나)

  • Cho, Sang-Hyeok;Cho, Il-Hoon;Lee, In-Young;Pyo, Seong-Min;Baik, Jung-Woo;Kim, Young-Sik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.7
    • /
    • pp.778-784
    • /
    • 2008
  • In this paper, a chip antenna using multi-layer configuration for multi-band operation, such as GSM, DCS, pcs, WCDMA, and Mobile WiMAX for 2.3 GHz is proposed. This proposed antenna is a PIFA structure with multi-layer configuration fabricated on R04003 substrate(${\varepsilon}_r=3.4$) and its size is $22{\times}5.5{\times}4.0\;mm^3$. Multi-layer structure can effectively reduce the size of an antenna from a reuse of air-space and can achieve broad bandwidth due to decrement of parallel capacitances from the insertion air-gap to the middle layer. The proposed antenna has a broadband operation by the high order resonance modes and the resonance at the top layer. The measured bandwidths with over 45 % radiation efficiency are 80 MHz($880{\sim}960\;MHz$) at the lower band and 690 MHz($1,710{\sim}2,400\;MHz$) at the higher band.

Investigation on the Origin of Band Gap in Heusler Alloy Co2MnSi through First-principles Electronic Structure Calculation (호이슬러 화합물 Co2MnSi에서 전자구조계산을 통한 에너지 간격의 원인에 대한 고찰)

  • Kim, Dong-Chul;Lee, Jae-Il
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.6
    • /
    • pp.201-205
    • /
    • 2008
  • In order to investigate the origin of the band gap in the half-metallic Heusler alloy, $Co_2MnSi$, through the electronic structure calculation, we have calculated the electronic structures for the compounds consisted of parts of Heusler structures, i.e. zinc-blende CoMn, half-Heusler CoMnSi, and artificial $Co_2Mn$, using the full-potential first-principles band calculation method. By investigating the band hybridization and energy gap for the calculated density of states for these compounds, we found that the the origin of the band gap is not consistent with the explanation discussed by Galanakis et al. We have also discussed the magnetism for these compounds by the calculated number of majority- and minority-spin electrons.

Properties of CdS:In Thin Films according to Substrate Temperature

  • Park, G.C;Lee, J.;Chang, H.D.;Jeong, W.J.;Park, J.Y.;Kim, Y.J.;Yang, H.H.;Yoon, J.H.;Park, H.R.;Lee, K.S.;Gu, H.B.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.857-860
    • /
    • 2004
  • Cubic CdS thin film with the strongest XRD peak (111) at diffraction angle $(\theta)$ of 26.5 was well made at substrate temperature of $150^{\circ}C$. At that time, lattice constant a of the thin film was $5.79{\AA}$, grain size of that was more over ${\mu}m$ and it's resistivity was over $10^3{\Omega}cm$. And the peak of diffraction intensityat miller index (111) of CdS:In thin film with dopant In of 1 atom% was shown higher about 20 % than undoped CdS thin film. Also, CdS:In thin film had in part hexagonal structure among cubic structure as secondary phase. Lattice constant of a and grain size of secondary phase of the film with dopant In of 1 atom% was $5.81{\AA}$ and around $1{\mu}m$ respectively The lowest resistivity of $5.1{\times}10^{-3}{\Omega}cm$ was appeared on dopant In of 1.5 atom%. Optical band gap of undoped CdS thin film was 2.43 eV and CdS:In thin film with dopant In of 0.5 atom% had the largest band gap 2.49 eV.

  • PDF

Annealing Temperature Dependence on the Physicochemical Properties of Copper Oxide Thin Films

  • Park, J.Y.;Kwon, T.H.;Koh, S.W.;Kang, Y.C.
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.4
    • /
    • pp.1331-1335
    • /
    • 2011
  • We report the results of the characterization of Cu oxide thin films deposited by radio frequency (r.f.) magnetron sputtering at different annealing temperatures. The deposited Cu oxide thin films were investigated by scanning electron microscopy, spectroscopic ellipsometry, X-ray diffraction, atomic force microscopy, Xray photoelectron spectroscopy, and contact angle measurements. The thickness of the films was about 180 nm and the monoclinic CuO phase was detected. The $CuO_2$ and $Cu(OH)_2$ phases were grown as amorphous phase and the ratio of the three phases were independent on the annealing temperature. The surface of Cu oxide films changed from hydrophilic to hydrophobic as the annealing temperature increased. This phenomenon is due to the increase of the surface roughness. The direct optical band gap was also obtained and laid in the range between 2.36 and 3.06 eV.

Signal Integrity Analysis of High Speed Interconnects In PCB Embedded with EBG Structures

  • Sindhadevi, M.;Kanagasabai, Malathi;Arun, Henridass;Shrivastav, A. K.
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.175-183
    • /
    • 2016
  • This paper brings out a novel method for reducing Near end and Far end Crosstalk using Electromagnetic Band Gap structures (EBG) in High Speed RF transmission lines. This work becomes useful in high speed closely spaced Printed Circuit Board (PCB) traces connected to multi core processors. By using this method, reduction of −40dB in Near-End Crosstalk (NEXT) and −60 dB in Far End Crosstalk (FEXT) is achieved. The results are validated through experimental measurements. Time domain analysis is performed to validate the signal integrity property of coupled transmission lines.

Design of a Dual-mode Annular Ring Antenna with a Coupling Feed (커플링 급전을 이용한 이중 모드 Annular Ring 안테나 설계)

  • Kim, Jae-Hee;Woo, Dae-Woong;Park, Wee-Sang
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.4
    • /
    • pp.351-356
    • /
    • 2009
  • A dual-mode annular ring antenna for both global positioning system(GPS) and satellite digital multimedia broad-casting(DMB) is designed. The proposed antenna consists of a coupling feed line and four slots on the annular ring patch. The gap between the feed line and the annular ring patch is used for an input impedance matching, and the slot length is used for adjusting the resonant frequency of the $TM_{21}$ mode at the DMB frequency. The antenna was fabricated and measured. The experimental results show that the antenna resonants at the GPS and DMB frequencies with suitable bandwidths, and had a broadside radiation pattern at the GPS band and a conical beam radiation pattern at the DMB band.

CdSe Sensitized ZnO Nanorods on FTO Glass for Hydrogen Production under Visible Light Irradiation (가시광 수소생산용 CdSe/ZnO nanorod 투명전극)

  • Kim, Hyun;Yang, Bee Lyong
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.2
    • /
    • pp.107-112
    • /
    • 2013
  • The ZnO is able to produce hydrogen from water however it can only absorb ultraviolet region due to its 3.37eV of wide band gap. Therefore efficiency of solar hydrogen production is low. In this work we report investigation results of improved visible light photo-catalytic properties of CdSe quantum dots(QDs) sensitized ZnO nanorod heterostructures. Hydrothermally vertically grown ZnO nanorod arrays on FTO glass were sensitized with CdSe by using SILAR(successive ionic layer adsorption and reaction) method. Morphology of grown ZnO and CdSe sensitized ZnO nanorods had been investigated by FE-SEM that shows length of $2.0{\mu}m$, diameter of 120~150nm nanorod respectively. Photocatalytic measurements revealed that heterostructured samples show improved photocurrent density under the visible light illumination. Improved visible light performance of the heterostructures is resulting from narrow band gap of the CdSe and its favorable conduction band positions relative to potentials of ZnO band and water redox reaction.