• Title/Summary/Keyword: band gap engineering

Search Result 727, Processing Time 0.036 seconds

Efficiency Improvement in InGaN-Based Solar Cells by Indium Tin Oxide Nano Dots Covered with ITO Films

  • Seo, Dong-Ju;Choi, Sang-Bae;Kang, Chang-Mo;Seo, Tae Hoon;Suh, Eun-Kyung;Lee, Dong-Seon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.345-346
    • /
    • 2013
  • InGaN material is being studied increasingly as a prospective material for solar cells. One of the merits for solar cell applications is that the band gap energy can be engineered from 0.7 eV for InN to 3.4 eV for GaN by varying of indium composition, which covers almost of solar spectrum from UV to IR. It is essential for better cell efficiency to improve not only the crystalline quality of the epitaxial layers but also fabrication of the solar cells. Fabrication includes transparent top electrodes and surface texturing which will improve the carrier extraction. Surface texturing is one of the most employed methods to enhance the extraction efficiency in LED fabrication and can be formed on a p-GaN surface, on an N-face of GaN, and even on an indium tin oxide (ITO) layer. Surface texturing method has also been adopted in InGaN-based solar cells and proved to enhance the efficiency. Since the texturing by direct etching of p-GaN, however, was known to induce the damage and result in degraded electrical properties, texturing has been studied widely on ITO layers. However, it is important to optimize the ITO thickness in Solar Cells applications since the reflectance is fluctuated by ITO thickness variation resulting in reduced light extraction at target wavelength. ITO texturing made by wet etching or dry etching was also revealed to increased series resistance in ITO film. In this work, we report a new way of texturing by deposition of thickness-optimized ITO films on ITO nano dots, which can further reduce the reflectance as well as electrical degradation originated from the ITO etching process.

  • PDF

Growth and effect of thermal annealing for $AgGaSe_2$ single crystal thin film by hot wall epitaxy (Hot wall epitaxy(HWE)법에 의한 $AgGaSe_2$ 단결정 박막 성장과 열처리 효과)

  • Baek, Seung-Nam;Hong, Kwang-Joon;Kim, Jang-Bok
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.16 no.5
    • /
    • pp.189-197
    • /
    • 2006
  • A stoichiometric mixture of evaporating materials for $AgGaSe_2$ single crystal thin films was prepared from horizontal electric furnace. To obtain the single crystal thin films, $AgGaSe_2$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the hot wall epitaxy(HWE) system. The source and substrate temperatures were $630^{\circ}C\;and\;420^{\circ}C$, respectively. The temperature dependence of the energy band gap of the $AgGaSe_2$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)=1.9501eV-(8.79x10^{-4}eV/K)T^2(T+250K)$. After the as-grown $AgGaSe_2$ single crystal thin films was annealed in Ag-, Se-, and Ga-atmospheres, the origin of point defects of $AgGaSe_2$ single crystal thin films has been investigated by the photoluminescence (PL) at 10K. The native defects of $V_{Ag},\;V_{Se},\;Ag_{int},\;and\;Se_{int}$ obtained by PL measurements were classified as a donors or accepters type. And we concluded that the heat-treatment in the Ag-atmosphere converted $AgGaSe_2$ single crystal thin films to an optical p-type. Also, we confirmed that Ga in $AgGaSe_2$/GaAs did not form the native defects because Ga in $AgGaSe_2$ single crystal thin films existed in the form of stable bonds.

Synthesis and Characterization of Power Conversion Efficiency of D/A Structure Conjugated Polymer Based on Benzothiadiazole-Benzodithiophene (Benzothiadiazole-benzodithiophene을 기반으로 한 D/A구조의 공액 고분자 합성 및 광전변환 효율 특성 개선 연구)

  • Seong, Ki-Ho;Yun, Dae-Hee;Woo, Je-Wan
    • Applied Chemistry for Engineering
    • /
    • v.24 no.5
    • /
    • pp.537-543
    • /
    • 2013
  • In this study, the push-pull structure polymer for organic photo voHaics (OPVs) was synthesized and characterized. The poly{4,8-didodecyloxybenzo[1,2-b;3,4-b]dithiophene-alt-5,6-bis(octyloxy)-4,7-di(thiophen-2-yl)benzo[c][1,2,5]-thiadiazole} (PDBDT-TBTD) was synthesized by Stille coupling reaction using the benzothiadiazole (BTD) derivative as an electron acceptor and benzodithiophene (BDT) derivative as an electron donor. The structure of monomers and polymers was identified by $^1H-NMR$ and GC-MS. The optical, physical and electrochemical properties of the conjugated polymer were identified by GPC, TGA, UV-Vis and cyclic voltammetry. The number average molecular weight ($M_n$) and initial decomposition temperature (5% weight loss temperature, $T_d$) of PDBDT-TBTD were 6200 and $323^{\circ}C$, respectively. The absorption maxima on the film was about 599 nm and the optical band gap was about 1.70 eV. The structure of device was ITO/PEDOT : PSS/PDBDT-TBTD : $PC_{71}BM/BaF_2/Ba/Al$. PDBDT-TBTD and $PC_{71}BM$ were blended with the weight ratio of 1:2 which were then used as an optical active layer. The power conversion efficiency (PCE) of fabricated device was measured by solar simulator and the best PCE was 2.1%.

Plasmonic Enhanced Light Absorption by Silver Nanoparticles Formed on Both Front and Rear Surface of Polycrystalline Silicon Thin Film Solar Cells

  • Park, Jongsung;Park, Nochang;Varlamov, Sergey
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.493-493
    • /
    • 2014
  • The manufacturing cost of thin-film photovoltics can potentially be lowered by minimizing the amount of a semiconductor material used to fabricate devices. Thin-film solar cells are typically only a few micrometers thick, whereas crystalline silicon (c-Si) wafer solar cells are $180{\sim}300\mu}m$ thick. As such, thin-film layers do not fully absorb incident light and their energy conversion efficiency is lower compared with that of c-Si wafer solar cells. Therefore, effective light trapping is required to realize commercially viable thin-film cells, particularly for indirect-band-gap semiconductors such as c-Si. An emerging method for light trapping in thin film solar cells is the use of metallic nanostructures that support surface plasmons. Plasmon-enhanced light absorption is shown to increase the cell photocurrent in many types of solar cells, specifically, in c-Si thin-film solar cells and in poly-Si thin film solar cell. By proper engineering of these structures, light can be concentrated and coupled into a thin semiconductor layer to increase light absorption. In many cases, silver (Ag) nanoparticles (NP) are formed either on the front surface or on the rear surface on the cells. In case of poly-Si thin film solar cells, Ag NPs are formed on the rear surface of the cells due to longer wavelengths are not perfectly absorbed in the active layer on the first path. In our cells, shorter wavelengths typically 300~500 nm are also not effectively absorbed. For this reason, a new concept of plasmonic nanostructure which is NPs formed both the front - and the rear - surface is worth testing. In this simulation Al NPs were located onto glass because Al has much lower parasitic absorption than other metal NPs. In case of Ag NP, it features parasitic absorption in the optical frequency range. On the other hand, Al NP, which is non-resonant metal NP, is characterized with a higher density of conduction electrons, resulting in highly negative dielectric permittivity. It makes them more suitable for the forward scattering configuration. In addition to this, Ag NP is located on the rear surface of the cell. Ag NPs showed good performance enhancement when they are located on the rear surface of our cells. In this simulation, Al NPs are located on glass and Ag NP is located on the rear Si surface. The structure for the simulation is shown in figure 1. Figure 2 shows FDTD-simulated absorption graphs of the proposed and reference structures. In the simulation, the front of the cell has Al NPs with 70 nm radius and 12.5% coverage; and the rear of the cell has Ag NPs with 157 nm in radius and 41.5% coverage. Such a structure shows better light absorption in 300~550 nm than that of the reference cell without any NPs and the structure with Ag NP on rear only. Therefore, it can be expected that enhanced light absorption of the structure with Al NP on front at 300~550 nm can contribute to the photocurrent enhancement.

  • PDF

Optical Properties and Phenol Destruction Performance of Pd-inserted TiO2 Photocatalysts (Pd이 삽입된 TiO2 광촉매의 광학 특성 및 페놀 분해 성능 평가)

  • Do, Jeong Yeon;Kim, Teho;Sim, Hwanseok;Jeong, Hamin;Choi, Jae Hoon;Kang, Misook
    • Applied Chemistry for Engineering
    • /
    • v.28 no.5
    • /
    • pp.547-553
    • /
    • 2017
  • This study focused on the difference of photocatalytic performance by the incorporation of Pd into the $TiO_2$ framework and suggested five different catalysts composed of $TiO_2$ and x mol% $Pd-TiO_2$ (x = 0.25, 0.5, 0.75, and 1.0). A typical sol-gel method was used to synthesize catalysts, and the phenol photodegradation performance of each catalysts was evaluated. The physicochemical and optical properties of catalysts were confirmed by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy/energy dispersive spectrometer (SEM/EDS), ultraviolet/visible spectroscopy (UV/Vis), photoluminescence spectroscopy (PL), and photocurrent measurements. With the addition of Pd ions, the band gap of catalysts was shortened and the charge separation between photogenerated electrons and holes easily also occurred. As a result, the phenol photo-destruction performance over 0.75 mol% $Pd-TiO_2$ catalyst was 3 times higher than that of pure $TiO_2$. This is believed to be due to Pd ions acted as an electron capturing function during photocatalysis.

A DC-DC Converter Design for OLED Display Module (OLED Display Module용 DC-DC 변환기 설계)

  • Lee, Tae-Yeong;Park, Jeong-Hun;Kim, Jeong-Hoon;Kim, Tae-Hoon;Vu, Cao Tuan;Kim, Jeong-Ho;Ban, Hyeong-Jin;Yang, Gweon;Kim, Hyoung-Gon;Ha, Pan-Bong;Kim, Young-Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.3
    • /
    • pp.517-526
    • /
    • 2008
  • A one-chip DC-DC converter circuit for OLED(Organic Light-Emitting Diode) display module of automotive clusters is newly proposed. OLED panel driving voltage circuit, which is a charge-pump type, has improved characteristics in miniaturization, low cost and EMI(Electro-Magnetic Interference) compared with DC-DC converter of PWM(Pulse Width Modulator) type. By using bulk-potential biasing circuit, charge loss due to parasitic PNP BJT formed in charge pumping, is prevented. In addition, the current dissipation in start-up circuit of band-gap reference voltage generator is reduced by 42% and the layout area of ring oscillator is reduced by using a logic voltage VLP in ring oscillator circuit using VDD supply voltage. The driving current of VDD, OLED driving voltage, is over 40mA, which is required in OLED panels. The test chip is being manufactured using $0.25{\mu}m$ high-voltage process and the layout area is $477{\mu}m{\times}653{\mu}m$.

Growth and characterization of MgZnO grown on R-plane sapphire substrate by plasma-assisted molecular beam epitaxy

  • Han, Seok-Kyu;Kim, Jung-Hyun;Hong, Soon-Ku;Lee, Jae-Wook;Lee, Jeong-Yong;Kim, Ho-Jong;Song, Jung-Hoon;Yao, Takafumi
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.114-114
    • /
    • 2009
  • ZnO has received considerable attention due to its potential applicability to optoelectronic devices such as ultraviolet-light emitting diodes (UVLEDs) and laser diodes (LDs). As well known, however, polar ZnO with the growth direction along the c-axis has spontaneous and piezoelectric polarizations that will result in decreased quantum efficiency. Recently, nonpolar ZnO has been studied to avoid such a polarization effect. In order to realize applications of nonpoar ZnO-based films to LEDs, growth of high quality alloys for quantum well structures is one of the important tasks that should be solved. $Mg_xZn_{1-x}O$ and $Cd_xZn_{1-x}O$ is ones of most promising alloys for this application because the alloys of ZnO with MgO and CdO provide a wide range of band-gap engineering spanning from 2.4 to 7.8 eV. In this study, we investigated on $Mg_xZn_{1-x}O$ films grown with various Mg/Zn flux ratios The films were grown on R-plane sapphire substrates by plasma-assisted molecular beam epitaxy (PAMBE). we investigated on $Mg_xZn_{1-x}O$ films grown with various Mg/Zn flux ratios. The films were grown on R-plane sapphire substrates by plasma-assisted molecular beam epitaxy (PAMBE). With the relatively low Mg/Zn flux ratios, a typical striated anisotropic surface morphology which was generally observed from the nonpolar (11-20) ZnO film on r-plane sapphire substrates. By increasing the Mg/Zn flux ratio, however, additional islands were appeared on the surface and finally the surface morphology was entirely changed, which was generally observed for the (0001) polar ZnO films by losing the striated morphology. Investigations by X-ray $\Theta-2{\Theta}$ diffraction revealed that (0002) and (10-11) ZnO planes are appeared in $Mg_xZn_{1-x}O$ films by increasing the Mg/Zn flux ratio. Further detailed investigation by transmission electron microscopy (TEM) and photoluminescence (PL) will be discussed.

  • PDF

Color Tuning of a Mn4+ Doped Phosphor : Sr1-xBaxGe4O9:MnMn4+0.005 (0.00 ≤ x ≤ 1.00) (Mn4+ 도핑된 형광체, Sr1-xBaxGe4O9:MnMn4+0.005 (0.00 ≤ x ≤ 1.00)의 Color Tuning)

  • Park, Woon Bae
    • Journal of the Korean Chemical Society
    • /
    • v.61 no.4
    • /
    • pp.163-167
    • /
    • 2017
  • Along with the progress of white LED technology, red phosphors have become increasingly important in industry and academia, and a more specific demand has steadily increased in the market. Red phosphors are used in high efficiency and high rendering LED lightings. However, using red phosphors with $Eu^{2+}$ activators caused color rewarming and reduced emission intensity in white LED chips due to strong reabsorption in the green or yellow wavelength range caused by the 4f-5d transition. $Mn^{4+}$ doped phosphors which have no such drawbacks and which can further improve the color rendering index (CRI) are now of great interest. However, $Mn^{4+}$-doped phosphors have a disadvantage in that the emission wavelength is determined depending on the host due to the $^2E_g{\rightarrow}^4A_2$ transition. In this study, the $SrO-BaO-GeO_2$ solid-solution was selected, and $Sr_{1-x}B_axGe_4O_9:Mn^{4+}{_{0.005}}$ ($0{\leq}x{\leq}1$) phosphors were synthesized and characterized. This led to a versatile color tuning in LED technology.

Junction of Porous SiC Semiconductor and Ag Alloy (다공질 SiC 반도체와 Ag계 합금의 접합)

  • Pai, Chul-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.576-583
    • /
    • 2018
  • Silicon carbide is considered to be a potentially useful material for high-temperature electronic devices, as its band gap is larger than that of silicon and the p-type and/or n-type conduction can be controlled by impurity doping. Particularly, porous n-type SiC ceramics fabricated from ${\beta}-SiC$ powder have been found to show a high thermoelectric conversion efficiency in the temperature region of $800^{\circ}C$ to $1000^{\circ}C$. For the application of SiC thermoelectric semiconductors, their figure of merit is an essential parameter, and high temperature (above $800^{\circ}C$) electrodes constitute an essential element. Generally, ceramics are not wetted by most conventional braze metals,. but alloying them with reactive additives can change their interfacial chemistries and promote both wetting and bonding. If a liquid is to wet a solid surface, the energy of the liquid-solid interface must be less than that of the solid, in which case there will be a driving force for the liquid to spread over the solid surface and to enter the capillary gaps. Consequently, using Ag with a relatively low melting point, the junction of the porous SiC semiconductor-Ag and/or its alloy-SiC and/or alumina substrate was studied. Ag-20Ti-20Cu filler metal showed promise as the high temperature electrode for SiC semiconductors.

Optical Property of Zinc Oxide Thin Films Prepared by Using a Metal Naphthenate Precursor (금속 나프텐산염을 이용하여 제조한 ZnO 박막의 광학적 특성)

  • Lim, Y.M.;Jung, J.H.;Jeon, K.O.;Jeon, Y.S.;Hwang, K.S.
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.10 no.3
    • /
    • pp.193-203
    • /
    • 2005
  • Highly c-axis oriented nanocrystalline ZnO thin films on silica glass substrates were prepared by spin coating-pyrolysis process with a zinc naphthenate precursor. Only the XRD intensity peak of (002) phase was observed for all samples. With an increase in heat treatment temperature, the peak intensity of (002) phase increases. No significant aggregation of particle was present. From scanning probe microscopy analyses, three-dimensional grain growth, which was thought to be due to inhomogeneous substrate surface and c-axis oriented grain growth of the ZnO phase, was independent on heal-treatment temperature. Highly homogeneous surface of the highly-oriented ZnO film was observed at $800^{\circ}C$. All the films exhibited a high transmittance (above 80%) in visible region except film heat treated at $1000^{\circ}C$, and showed a sharp fundamental absorption edge at about $0.38{\sim}0.40{\mu}m$. The estimated energy band gap for all the films were within the range previously reported for films and single crystal. ZnO films, consisting of densely packed grains with smooth surface morphology were obtained by heat treatment at $600^{\circ}C{\sim}800^{\circ}C$, expected to be ideal for practical application, such as transparent conductive film and optical device.

  • PDF