• Title/Summary/Keyword: band gap engineering

Search Result 727, Processing Time 0.031 seconds

Effects of The Substrate Temperature and The Thin film Thickness on The Properties of The Ga-doped ZnO Thin Film (기판온도 및 박막두께가 Ga-doped ZnO 박막의 특성에 미치는 영향)

  • Cho, Won-Jun;Kang, Seong-Jun;Yoon, Yung-Sup
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.1
    • /
    • pp.6-13
    • /
    • 2010
  • In this study, Ga-doped ZnO (GZO) thin films have been fabricated on Eagle 2000 glass substrates at various substrate temperatures $100{\sim}400^{\circ}C$ and thin film thickness by RF magnetron sputtering in order to investigate the structural, electrical, and optical properties of the GZO thin films. It is observed that all the thin films exhibit c-axis orientation and a (002) diffraction peak only. The GZO thin films, which were deposited at $T=300^{\circ}C$ and 400 nm, shows the highest (002) orientation, and the full width at half maximum (FWHM) of the (002) diffraction peak is $0.4^{\circ}$. AFM analysis shows that the formation of relatively smooth thin films are obtained. The lowest resistivity ($8.01{\times}10^{-4}\;{\Omega}cm$) and the highest carrier concentration ($3.59{\times}10^{20}\;cm^{-3}$) are obtained in the GZO thin films deposited at $T=300^{\circ}C$ and 400 nm. The optical transmittance in the visible region is approximately 80 %, regardless of process conditions. The optical band-gap shows the slight blue-shift with increase in doping which can be explained by the Burstein-Moss effect.

Optical and Electrical Properties of Al-doped ZnO Thin Films Fabricated by Sol-gel Method with Various Al Doping Concentrations and Annealing Temperatures (Sol-gel 법으로 제작한 Al-doped ZnO 박막의 도핑 농도 및 열처리 온도에 따른 광학적 및 전기적 특성)

  • Shin, Hyun-Ho;Kang, Seong-Jun;Yoon, Yung-Sup
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.5
    • /
    • pp.1-7
    • /
    • 2007
  • AZO thin films have been fabricated on quartz substrate with various Al doping concentrations and annealing temperatures by sol-gel method. The bset condition of (002) orientation and smooth surface (rms = 1.082 nm) is obtained for the AZO thin film doped with 1 mol % Al and annealed at 550 $^{\circ}C$. The optical transmittance of AZO thin films is higher than 80 % in the visible region. We observe that the energy band gap extends with increasing the Al doping concentration. This phenomenon is due to the Burstein-Moss effect. Through the measurement of Hall effect, it is observed that the AZO thin film has larger carrier concentration and smaller electrical resistivity than the pure ZnO thin film. However, the AZO thin film shows the decrease of carrier concentration and the increase of resistivity with the increase of Al concentration, that is due to the segregation of Al at grain boundaries. The maximum carrier concentration of $1.80{\times}10^{19}\;cm^{-3}$ and the minimum resistivity of 0.84 ${\Omega}cm$ are obtained for the AZO thin film doped with 1 mol % Al and annealed at 550 $^{\circ}C$.

Quantum Confinement Effect Induced by Thermal Treatment of CdSe Adsorbed on $TiO_2$ Nanostructure

  • Lee, Jin-Wook;Im, Jeong-Hyeok;Park, Nam-Gyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.213-213
    • /
    • 2012
  • It has been known that quantum confinement effect of CdSe nanocrystal was observed by increasing the number of deposition cycle using successive ionic layer adsorption and reaction (SILAR) method. Here, we report on thermally-induced quantum confinement effect of CdSe at the given cycle number using spin-coating technology. A cation precursor solution containing $0.3\;M\;Cd(NO_3)_2{\cdot}4H_2O$ is spun onto a $TiO_2$ nanoparticulate film, which is followed by spinning an anion precursor solution containing $0.3\;M\;Na_2\;SeSO_3$ to complete one cycle. The cycle is repeated up to 10 cycles, where the spin-coated $TiO_2$ film at each cycle is heated at temperature ranging from $100^{\circ}C$ to $250^{\circ}C$. The CdSe-sensitized $TiO_2$ nanostructured film is contacted with polysulfide redox electrolyte to construct photoelectrochemical solar cell. Photovoltaic performance is significantly dependent on the heat-treatment temperature. Incident photon-to-current conversion efficiency (IPCE) increases with increasing temperature, where the onset of the absorption increases from 600 nm for the $100^{\circ}C$- to 700 nm for the $150^{\circ}C$- and to 800 nm for the $200^{\circ}C$- and the $250^{\circ}C$-heat treatment. This is an indicative of quantum size effect. According to Tauc plot, the band gap energy decreases from 2.09 eV to 1.93 eV and to 1.76 eV as the temperature increases from $100^{\circ}C$ to $150^{\circ}C$ and to $200^{\circ}C$ (also $250^{\circ}C$), respectively. In addition, the size of CdSe increases gradually from 4.4 nm to 12.8 nm as the temperature increases from $100^{\circ}C$ to $250^{\circ}C$. From the differential thermogravimetric analysis, the increased size in CdSe by increasing the temperature at the same deposition condition is found to be attributed to the increase in energy for crystallization with $dH=240cal/^{\circ}C$. Due to the thermally induced quantum confinement effect, the conversion efficiency is substantially improved from 0.48% to 1.8% with increasing the heat-treatment temperature from $100^{\circ}C$ to $200^{\circ}C$.

  • PDF

The Analysis of the Breakdown Voltage according to the Change of JTE Structures and Design Parameters of 4H-SiC Devices (4H-SiC 소자의 JTE 구조 및 설계 조건 변화에 따른 항복전압 분석)

  • Koo, Yoon-Mo;Cho, Doo-Hyung;Kim, Kwang-Soo
    • Journal of IKEEE
    • /
    • v.19 no.4
    • /
    • pp.491-499
    • /
    • 2015
  • Silicon Carbide(SiC) has large advantage in high temperature and high voltage applications because of its high thermal conductivity and large band gap energy. When using SiC to design power semiconductor devices, edge termination techniques have to be adjusted for its maximum breakdown voltage characteristics. Many edge termination techniques have been proposed, and the most appropriate technique for SiC device is Junction Termination Extension(JTE). In this paper, the change of breakdown voltage efficiency ratio according to the change of doping concentration and passivation oxide charge of each JTE techniques is demonstrated. As a result, the maximum breakdown voltage ratio of Single Zone JTE(SZ-JTE), Double Zone JTE(DZ-JTE), Multiple Floating Zone JTE(MFZ-JTE), and Space Modulated JTE(SM-JTE) is 98.24%, 99.02%, 98.98%, 99.22% each. MFZ-JTE has the smallest and SZ-JTE has the largest sensitivity of breakdown voltage ratios according to the change of JTE doping concentration. Additionally the degradation of breakdown voltage due to the passivation oxide charge is analyzed, and the sensitivity is largest in SZ-JTE and smallest in MFZ-JTE, too. In this paper, DZ-JTE and SM-JTE is the best efficiency JTE techniques than MFZ-JTE which needs large doping concentration in short JTE width.

Degradation of Sulfonamide Antibiotic Substances by Ozonation: An Experimental and Computational Approach (설폰아미드계 항생물질의 오존산화분해에 대한 계산화학적 해석 및 실험적 검증)

  • Won, Jung Sik;Lim, Dong Hee;Seo, Gyu Tae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.6
    • /
    • pp.442-450
    • /
    • 2014
  • Concern has grown over a presence of micropollutants in natural water since sulfonamide antibiotic substances such as sulfamethazine, sulfamethoxazole, sulfathiazole have been frequently detected in Nakdong River, Korea. The current work investigates the degradation of the three sulfonamide substances by using quantum chemistry calculations of density functional theory (DFT) and experimental measurement techniques of Fourier transform infrared spectroscopy (FT-IR) and ultraviolet-visible spectrophotometer (UV-VIS). DFT calculations demonstrate that the lowest energy gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbitals (LUMO) lies in sulfanilamide functional group of sulfonamide, implying that the sulfanilamide functional group would be the most active site for ozone oxidation. Also, UV-VIS spectra and FT-IR analysis reveal that 260 nm band originated from sulfanilamide group was absent after ozone oxidation, indicating that a functional group of amine (N-H) was removed from sulfanilamide. Both theoretical and experimental observations agree well with each other, demonstrating the DFT calculation tool can be an alternative tool for the prediction of chemical reactions in purification treatment processes.

Roles of i-SiC Buffer Layer in Amorphous p-SiC/i-SiC/i-Si/n-Si Thin Film Solar Cells (비정질 p-SiC/i-SiC/i-Si/n-Si 박막 태양전지에서 i-SiC 완충층의 역할)

  • Kim, Hyun-Chul;Shin, Hyuck-Jae;Lee, Jae-Shin
    • Korean Journal of Materials Research
    • /
    • v.9 no.12
    • /
    • pp.1155-1159
    • /
    • 1999
  • Thin film solar cells on a glass/$SnO_2$ substrate with p-SiC/i-Si/n-Si heterojunction structures were fabricated using a plasma-enhanced chemical-vapor deposition system. The photovoltaic properties of the solar cells were examined with varying the gas phase composition, x=$CH_4/\;(SiH_4+CH_4)$, during the deposition of the p-SiC layer. In the range of x=0~0.4, the efficiency of solar cell increased because of the increased band gap of the p-SiC window layer. Further increase in the gas phase composition, however, led to a decrease in the cell efficiency probably due to in the increased composition mismatch at the p-SiC/i-Si layers. As a result, the efficiency of a glass/$SnO_2$/p-SiC/i-SiC/i-Si/n-Si/Ag thin film solar cell with $1cm^2$ area was 8.6% ($V_{oc}$=0.85V, $J_{sc}$=16.42mA/$cm^2$, FF=0.615) under 100mW/$cm^2$ light intensity.

  • PDF

Microfluidic Assisted Synthesis of Ag-ZnO Nanocomposites for Enhanced Photocatalytic Activity (광촉매 성능 강화를 위한 미세유체공정 기반 Ag-ZnO 나노복합체 합성)

  • Ko, Jae-Rak;Jun, Ho Young;Choi, Chang-Ho
    • Clean Technology
    • /
    • v.27 no.4
    • /
    • pp.291-296
    • /
    • 2021
  • Recently, there has been increasing demand for advancing photocatalytic techniques that are capable of the efficient removal of organic pollutants in water. TiO2, a representative photocatalytic material, has been commonly used as an effective photocatalyst, but it is rather expensive and an alternative is required that will fulfill the requirements of both high performing photocatalytic activities and cost-effectiveness. In this work, ZnO, which is more cost effective than TiO2, was synthesized by using a microreactor-assisted nanomaterials (MAN) process. The process enabled a continuous production of ZnO nanoparticles (NPs) with a flower-like structure with high uniformity. In order to resolve the limited light absorption of ZnO arising from its large band gap, Ag NPs were uniformly decorated on the flower-like ZnO surface by using the MAN process. The plasmonic effect of Ag NPs led to a broadening of the absorption range toward visible wavelengths. Ag NPs also helped inhibit the electron-hole recombination by drawing electrons generated from the light absorption of the flower-like ZnO NPs. As a result, the Ag-ZnO nanocomposites showed improved photocatalytic activities compared with the flower-like ZnO NPs. The photocatalytic activities were evaluated through the degradation of methylene blue (MB) solution. Scanning electron microscopy (SEM), x-ray diffraction (XRD), and energy-dispersive x-ray spectroscopy (EDS) confirmed the successful synthesis of Ag-ZnO nanocomposites with high uniformity. Ag-ZnO nanocomposites synthesized via the MAN process offer the potential for cost-effective and scalable production of next-generation photocatalytic materials.

Effect of Surfactants on ZnO Synthesis by Hydrothermal Method and Photocatalytic Properties (계면활성제 첨가에 의한 산화아연의 수열합성과 광촉매 특성)

  • Hyeon, Hye-Hyeon;Lee, Dong-Kyu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.1
    • /
    • pp.50-57
    • /
    • 2017
  • Zinc oxide is, one of metal oxide semiconductor, harmless to human and environment-friendly. It has excellent chemical and thermal stability properties. Wurtzite-zinc oxide is a large band gap energy of 3.37 eV and high exciton binding energy of 60 meV. It can be applied to various fields, such as solar cells, degradation of the dye waste, the gas sensor. The photocatalytic activity of zinc oxide is varied according to the particle shape and change of crystallinity. Therefore, It is very important to specify the additives and the experimental variables. In this study, the zinc oxide were synthesized by using a microwave assisted hydrothermal synthesis. The precursor was used as the zinc nitrate, the pH value was controlled as 11 by NaOH. Surfactants are the ethanolamine, cetyltrimethylammonium bromide, sodium dodecyl sulfate, sorbitan monooleate was added by changing the concentration. The composite particles had the shape of a star-like, curcular cone, seed shape, flake-sphere. Physical and chemical properties of the obtained zinc oxide was characterized using x-ray diffractometer, field emission scanning electron microscopy, thermogravimetric analysis and optical properties was characterized using UV-visible spectroscopy, photoluminescence and raman spectroscopy.

Nearly single crystal, few-layered hexagonal boron nitride films with centimeter size using reusable Ni(111)

  • Oh, Hongseok;Jo, Janghyun;Yoon, Hosang;Tchoe, Youngbin;Kim, Sung-Soo;Kim, Miyoung;Sohn, Byeong-Hyeok;Yi, Gyu-Chul
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.286-286
    • /
    • 2016
  • Hexagonal boron nitride (hBN) is a dielectric insulator with a two-dimensional (2D) layered structure. It is an appealing substrate dielectric for many applications due to its favorable properties, such as a wide band gap energy, chemical inertness and high thermal conductivity[1]. Furthermore, its remarkable mechanical strength renders few-layered hBN a flexible and transparent substrate, ideal for next-generation electronics and optoelectronics in applications. However, the difficulty of preparing high quality large-area hBN films has hindered their widespread use. Generally, large-area hBN layers prepared by chemical vapor deposition (CVD) usually exhibit polycrystalline structures with a typical average grain size of several microns. It has been reported that grain boundaries or dislocations in hBN can degrade its electronic or mechanical properties. Accordingly, large-area single crystalline hBN layers are desired to fully realize the potential advantages of hBN in device applications. In this presentation, we report the growth and transfer of centimeter-sized, nearly single crystal hexagonal boron nitride (hBN) few-layer films using Ni(111) single crystal substrates. The hBN films were grown on Ni(111) substrates using atmospheric pressure chemical vapor deposition (APCVD). The grown films were transferred to arbitrary substrates via an electrochemical delamination technique, and remaining Ni(111) substrates were repeatedly re-used. The crystallinity of the grown films from the atomic to centimeter scale was confirmed based on transmission electron microscopy (TEM) and reflection high energy electron diffraction (RHEED). Careful study of the growth parameters was also carried out. Moreover, various characterizations confirmed that the grown films exhibited typical characteristics of hexagonal boron nitride layers over the entire area. Our results suggest that hBN can be widely used in various applications where large-area, high quality, and single crystalline 2D insulating layers are required.

  • PDF

Synthesis of Doped Polymethylphenylsilane Conductive Polymers and their Structure Characteristics (포리메틸페닐실란계 전도성 고분자의 합성과 구조 특성)

  • Yang, Hyun-Soo;Kang, Phil-Hyun;Kim, Jeong-Soo;Ryu, Hae-il;Kim, Young-Ho
    • Applied Chemistry for Engineering
    • /
    • v.7 no.5
    • /
    • pp.954-962
    • /
    • 1996
  • Four kind of polysilanes which had side chains of methyl, phenyl, and mixed structures, were synthesized and modified by doping with iodine. The structural, thermal, and electric characteristics of obtained polymers were systematically observed with iodine, The structural, thermal, and electric characteristics of obtained polymers were systematically observed with FT-IR, UV/VIS, TGA/DTG, DSC, and measurement of electric conductivity. From FT-IR spectra, it was confirmed that the synthesized polysilanes had side chains of methyl, phenyl, and mixed structures. The thermal stabilities of the polymers were found to increase with phenyl substituents. The polysilanes with phenyl side groups showed ${\sigma}-{\sigma}*$ transition absorption at wavelengths longer than 350 nm. The bathochromic shift of polysilanes with phenyl substituents relates probably to the narrowed band gap caused by delocalization of ${\pi}$-electron. The polymers doped with iodine showed multi-step pyrolysis behavior and higher residue compared with that of the undoped polymers. The electric conductivities of the undoped and doped polysilanes were $10^{-5}S/cm$ and $10^{-4}S/cm$, respectively.

  • PDF