• Title/Summary/Keyword: ballast water

Search Result 220, Processing Time 0.029 seconds

Effects of Increased CO2 and Temperature on the Growth of Four Diatom Species (Chaetoceros debilis, Chaetoceros didymus, Skeletonema costatum and Thalassiosira nordenskioeldii) in Laboratory Experiments

  • Hyun, Bonggil;Choi, Keun-Hyung;Jang, Pung-Guk;Jang, Min-Chul;Lee, Woo-Jin;Moon, Chang-Ho;Shin, Kyoungsoon
    • Journal of Environmental Science International
    • /
    • v.23 no.6
    • /
    • pp.1003-1012
    • /
    • 2014
  • We examined the combined impacts of future increases of $CO_2$ and temperature on the growth of four marine diatoms (Skeletonema costatum, Chaetoceros debilis, Chaetoceros didymus, Thalassiosira nordenskioeldii). The four strains were incubated under four different conditions: present ($pCO_2$: 400ppm, temperature: $20^{\circ}C$), acidification ($pCO_2$: 1000ppm, temperature: $20^{\circ}C$), global warming ($pCO_2$: 400ppm, temperature: $25^{\circ}C$), and greenhouse ($pCO_2$: 1000ppm, temperature: $25^{\circ}C$) conditions. Under the condition of higher temperatures, growth of S. costatum was suppressed, while C. debilis showed enhanced growth. Both C. didymus and T. nodenskioldii showed similar growth rates under current and elevated temperature. None of the four species appeared affected in their cell growth by elevated $CO_2$ concentrations. Chetoceros spp. showed increase of pH per unit fluorescence under elevated $CO_2$ concentrations, but no difference in pH from that under current conditions was observed for either S. costatum or T. nodenskioeldii, implying that Chetoceros spp. can take up more $CO_2$ per cell than the other two diatoms. Our results of cell growth and pH change per unit fluorescence suggest that both C. debilis and C. didymus are better adapted to future oceanic conditions of rising water temperature and $CO_2$ than are S. costatum and T. nodenskioeldii.

Development of Automatic Backwashing Treatment System for Ballast Water (자동역세척 여과장치를 이용한 선박 밸러스트수 처리)

  • Park Sang-Ho;Lim Jae-Dong;Kim In-Soo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2005.10a
    • /
    • pp.181-185
    • /
    • 2005
  • The treated ballast water from previous treatment contains microorganisms and pathogenic organisms in an filtration treatment system. The advantage of this process can be filtrated to minimize the demage to screen clogging of drum filter with sweeping the solids off rotating the surface of the filter. Another advantage is to drop off the solids with controlling revolution of drum screen in pretreatment filtration process. Also the fact that it is easy to attach and detach a several type of screen for getting the expected water quality is another advantage, too. Filter rotation speed at 20rpmis 40.5cmHg and 40rpm is 36.6cmHg. Filter out impurities from ballast water over 60rpm is 35cmHg. Filtration system removal aquatic organism over $80{\mu}m$ in ballast water. This study shows that the filtration treatment system has a potential for the removal of ballast water.

  • PDF

Development of an Ultra-Violet Lamp and a Ballast for Ship's Ballast Water Treatment (선박평형수 처리용 자외선 램프 및 안정기 개발)

  • Cheon, Sang-Gyu;Park, Dae-Won;Kil, Gyung-Suk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.5
    • /
    • pp.675-681
    • /
    • 2011
  • In this paper, we dealt with the design and fabrication of a medium pressure ultra-violet (UV) lamp and a magnetic ballast which are main components for ballast water treatment systems (BWTS). To acquire an optimal discharge condition of UV lamp, electrical and optical characteristics depending on the argon gas volume and the amount of mercury were experimentally analyzed. Rated voltage, current and power consumption of a prototype lamp were 490 [V], 8.6 [A] and 4.0 [kW], respectively. UV intensity of the lamp was 15 [%] higher than that of an equivalent lamp which is used in a BWTS. The magnetic ballast was designed in a UI core type through theoretical analysis and simulation. The open voltage and the rated power consumption of the ballast were 920 [V] and 8.5 [kVA] respectively. The disinfection efficacy which is carried out in a BWTS equipped with the UV lamp and magnetic ballast was over 99.99 [%], and this satisfy the IMO regulations.

Numerical Analysis on Freezing in the Ship Voyaging in Polar Regions

  • Kang, Ho-Keun;Kim, Ki-Pyoung;Ahn, Soo-Whan
    • Journal of Power System Engineering
    • /
    • v.17 no.5
    • /
    • pp.30-37
    • /
    • 2013
  • For vessels operating in the cold climate regions, the ballast water inside or hopper tanks above the waterline may be frozen, starting at the top of the tank and at the side walls. Therefore, countermeasures against freeze-up of the ballast tank such as air-bubbling system, hot steam injecting system, heating coil system and water circulating system are taken to prevent freeze-up phenomenon; however, there are no rigorous investigations of anti-freezing to examine the effectiveness and validity of systems against freeze-up of the ballast tank, in which the temperatures are about -$25^{\circ}C$ (ambient air temperature) and $0^{\circ}C$ (sea water), respectively. In this paper, to ensure reasonable specifications for cold regions if the measures from the above-mentioned systems against freeze-up are effective, the phenomenon of ballast tank freeze-up is simulated and discussed in low temperature conditions. With the results using the commercial CFD code, CFX 14, the most cost-effective solution is conducted to prevent being frozen along the outer surface.

Consideration of the Procedure for IMO Approval of Ballast Water Treatment System that Make Use of Active Substances (활성물질을 사용하는 선박평형수 처리장치의 IMO 승인 절차 고찰)

  • Kim, Eun-Chan
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.11 no.4
    • /
    • pp.214-220
    • /
    • 2008
  • The Ballast Water Management Convention provides that ballast water treatment systems which make use of active substances shall be approved from IMO according to the procedure developed by the IMO. The Convention described that active substance means a substance or organism, including a virus or a fungus, that has a general or specific action on or against harmful aquatic organisms and pathogens. The Marine Environment Protection Committee of IMO gave basic approval to 13 ballast water management systems and final approval to 4 systems until October 2008. This paper considered the matter of procedure and documents of the basic and final approval based on the "Procedure for approval of ballast water management systems that make use of Active Substances (G9)" and "The Methodology for information gathering and the conduct of work of the GESAMP-BWWG" and summarized the specifications of the treatment systems which was granted the basic or final approval from IMO and raised several points.

  • PDF

Risk Assessment for Retrofitting a Ballast Water Treatment System on an Exising Vessel (현존선에 선박 평형수 처리장치를 설치를 위한 위험도 평가 분석)

  • JEE, Jae-Hoon;OH, Cheol
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.28 no.6
    • /
    • pp.1602-1613
    • /
    • 2016
  • Since Ballast Water Management Convention has been adopted, Ballast Water Management Convention is not effected yet. This convention will only enter into force 12 months after its ratification by 30 states, collectively representing 35% of world merchant shipping tonnnage. Morocco, Indonesia and Ghana have ratified this convention during last 29th IMO Assembly meeting which was held in November 2015. In 2016, Belgium, Fiji, Saint Lucia and Peru have become the latest countries to ratify the convention. As of now, 51 states and 34.87% combined merchant fleets are being calculated. BWM convention will be applied to not only new ships but also, existing ships after it is effected. Thus, existing vessel will be retrofitted a Ballast Water Treatment System according to D-2 Requirement until first IOPP nenewal survey after date of entry into force of the convention. Currently, about 65 BWTSs certified by Administration will be reported to IMO, even type of BWTSs is very various. Thus, a risk of each BWTS can be existed, and this existed risk can be also effected to ship's crew safety and protection of ship's own property. Therefore, we have evaluated a risk assessment for an existing vessel retrofitting an ultra violet type Ballast Water Treatment System which is mostly developed in the world. And we described the procedure of selecting a sample vessel, consequently, bulk carrier is selected because this vessel kind is mostly charged in the world. Especially, DWT 175K size is selected. Risk Assessment is using a HAZID and HAZOP method, evaluation method is referred to IMO Document "Considerated test of the Guidelines for Formal Safety Assessment (FSA) for use in the IMO rule-marking process(MSC/Circ.1203-MEPC/Circ.392)". The Risk Assessment Section is decided to 3 Nodes, Consequently, total risks have evaluated 51 items.

Development of Ballast Water Treatment Technology (Feasibility Study of NaOCl Produced by Electrolysis) (밸러스트수 처리기술개발 I (해수전해법의 적용가능성 연구))

  • Yoon, B.S.;Rho, J.H.;Kim, K.I.;Park, K.S.;Kim, H.R.
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.8 no.4
    • /
    • pp.174-178
    • /
    • 2005
  • Destruction of marine ecology system induced by the bal last water discharged from ships is one of the most serious problem among the various ship associated environmental impacts. International Maritime Organization (IMO) has actively dealt with this problem for a long time and is going to start to activate very strong international treatment for preventing ocean from such serious environmental impact. Various technologies of ballast water treatment are now being developed all over the world. In this paper, recent trend of existing ballast water treatment technologies is investigated in detail. Furthermore, in order to apply electrolysis technology to ballast wale r treatment, its basic principle is reviewed theoretically and its feasibility is checked through some in-situ experiments. Quite good results are shown in the experiments enough to confirm its applicability in ballast water treatment.

  • PDF

Counting Harmful Aquatic Organisms in Ballast Water through Image Processing (이미지처리를 통한 선박평형수 내 유해수중생물 개체수 측정)

  • Ha, Ji-Hun;Im, Hyo-Hyuk;Kim, Yong-Hyuk
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.6 no.3
    • /
    • pp.383-391
    • /
    • 2016
  • Ballast water provides stability and manoeuvrability to a ship. Foreign harmful aquatic organisms, which were transferred by ballast water, cause disturbing ecosystem. In order to minimize transference of foreign harmful aquatic organisms, IMO(International Maritime Organization) adopted the International Convention for the Control and Management of Ship's Ballast Water and Sediments in 2004. If the convention take effect, a port authority might need to check that ballast water is properly disposed of. In this paper, we propose a method of counting harmful aquatic organisms in ballast water thorough image processing. We extracted three samples from the ballast water that had been collected at Busan port in Korea. Then we made three grey-scale images from each sample as experimental data. We made a comparison between the proposed method and CellProfiler which is a well known cell-counting program based on image processing. Setting of CellProfiler is empirically chosen from the result of cell count by an expert. After finding a proper threshold for each image at which the result is similar to that of CellProfiler, we used the average value as the final threshold. Our experimental results showed that the proposed method is simple but about ten times faster than CellProfiler without loss of the output quality.