• Title/Summary/Keyword: ball robot

Search Result 102, Processing Time 0.029 seconds

Golf Club Fitting Using Robot Machine Data (로봇머신 데이터를 이용한 골프 클럽 피팅)

  • Park, Sung-Jin;Jun, Jai-Hong;Park, Young-Jin
    • Korean Journal of Applied Biomechanics
    • /
    • v.22 no.1
    • /
    • pp.75-82
    • /
    • 2012
  • The purpose of this study was to suggest the proper shaft and head fitting methods of the golf club to increase the flight distance of the golf ball. Rotations per minute of the golf ball(RPM), ratio of Ball speed to club head speed(T-Ratio) and launch angle right after impact(LA), which are directly related to ball flight distance, were measured using Spectra with shutter speed of 1/1000sec at the constant head speed of 95mph which was controlled by robot golf swing machine. In order to investigate the effect of club shaft to the 3 selected variables, 10 shafts were used to make ten test clubs with one controlled club head which is the most commonly used by golf players. To measure the effect of the club head to the 3 selected variables, 6 golf club heads which are most commonly used by golfers were selected to make 6 test clubs with a controlled shaft which is one of the best known by players. The shafts and the heads were identified by statistical analysis to increase or decrease the RPM, T-ratio and LA. A proper fitting method of the selected shafts and the club head was suggested to increase the ball flight distance in golf.

A Study on Ball Screw Polishing Using Magnetic Assisted Polishing (자기연마법을 이용한 볼나사의 연마가공에 관한 연구)

  • 이용철;이응숙;최헌종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.43-47
    • /
    • 1995
  • The ball screw is one of the important mechanical parts for the linear motion feeding systems. The usage of the ball screw has been growing in various industrial fields such as CNC machine tool, industrial robot and automated systems. Because of ever increasing demand for ball screws, increased accuracy and quality of the ball screw is needed,especially the surface roughness of the ball contact area in order to diminish noise and vibration. Therefore to improve the surface roughness of the area,we introduced magnetic assisted polishing which is one of the new potential polishing methods. In this study, diamond slurry and iron powder was used for magnetic assisted polishing of the ball bearing surface. This polishing process was experimentally confirmed to improve the surface roughness of the ball bearing.

  • PDF

Design and Analysis of Ball Screw-driven Robotic Gripper (볼 나사 구동형 로봇 그리퍼 설계 및 특성 분석)

  • Kim, Byoung-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.1
    • /
    • pp.22-27
    • /
    • 2012
  • This paper presents a ball screw-driven robotic gripper mechanism which is possible to grasp an object and analyzes its kinematic feature for grasping by simulation. For the purpose of identifying the feature of the robot gripper, we try to confirm the kinematics relating the joint space of the driving actuator to the gripper's tip space. To be specific, the proposed robot gripper employs one actuator and a symmetrical closed-chain structure. As a result, the specified robot gripper has an advantage of robustness to external forces structurally, and it is easy to implement simple grasping operations. Also the gripper has a useful squeezing effect for power grasping.

Synchronization Error-based Control Approach for an Industrial High-speed Parallel Robot (다축 동기 제어 방법 기반의 산업용 고속 병렬로봇 제어)

  • Do, Hyun Min;Kim, Byung In;Park, Chanhun;Kyung, Jin Ho
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.5
    • /
    • pp.354-361
    • /
    • 2016
  • Parallel robots are usually used for performing pick-and-place motion to increase productivity in high-speed environments. The present study proposes a high-speed parallel robot and a control approach to improve the tracking performance for the purpose of handling a solar cell. However, the target processes are not limited to the solar cell-handling field. Therefore, a delta-type parallel manipulator is designed, and a ball joint structure is specifically proposed to increase the allowed angle that would meet the required workspace. A control algorithm considering the synchronization between multiple joints in a closed-chain mechanism is also suggested to improve the tracking performance, where the tracking and synchronization errors are simultaneously considered. In addition, a prototype machine with the proposed ball joint is implemented. A satisfactory tracking performance is achieved by applying the proposed control algorithm, with a cycle time of 0.3 s for a 0.1 kg payload.

2-Axis Cartesian Coordinate Robot Optimization for Air Hockey Game (에어 하키 게임을 위한 2축 직교 좌표 로봇 최적화)

  • Kim, Hui-yeon;Lee, Won-jae;Yu, Yun Seop;Kim, Nam-ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.436-438
    • /
    • 2019
  • Air hockey robots are machine vision systems that allow users to play hockey balls through the camera. The position detection of the hockey ball is realized by using the color information of the ball using OpenCV library. It senses the position of the hockey ball, predicts its trajectory, and sends the result to the ARM Cortex-M board. The ARM Cortex-M board controls a 2- Axis Cartesian Coordinate Robot to run an air hockey game. Depending on the strategy of the air hockey robot, it can operate in defensive, offensive, defensive and offensive mode. In this paper, we describe a vision system development and trajectory prediction system and propose a new method to control a biaxial orthogonal robot in an air hockey game.

  • PDF

Development of 3 D.O.F parallel robot's simulator for education

  • Yoo, Jae-Myung;Kim, John-Hyeong;Park, Dong-Jin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2290-2295
    • /
    • 2005
  • In this paper, it is developed simulator system of 3 D.O.F parallel robot for educate of expertness. This simulator system is composed of three parts ? 3 D.O.F parallel robot, controller (hardware) and software. First, basic structure of the robot is 3 active rotary actuator that small geared step motor with fixed base. An input-link is connected to this actuator, and this input-link can connect two ball joints. Thus, two couplers can be connected to the input-link as a pair. An end-plate, which is jointed by a ball joint, can be connected to the opposite side of the coupler. A sub-link is produced and installed to the internal spring, and then this sub-link is connected to the upper and bottom side of the coupler in order to prevent a certain bending or deformation of the two couplers. The robot has the maximum diameter of 230 mm, 10 kg of weight (include the table), and maximum height of 300 mm. Hardware for control of the robot is composed of computer, micro controller, pulse generator, and motor driver. The PC used in the controller sends commands to the controller, and transform signals input by the user to the coordinate value of the robot by substituting it into equations of kinematics and inverse kinematics. A controller transfer the coordinate value calculated in the PC to a pulse generator by transforming it into signals. A pulse generator analyzes commands, which include the information received from the micro controller. A motor driver transfer the pulse received from the pulse generator to a step motor, and protects against the over-load of the motor Finally, software is a learning purposed control program, which presents the principle of a robot operation and actual implementation. The benefit of this program is that easy for a novice to use. Developed robot simulator system can be practically applied to understand the principle of parallel mechanism, motors, sensor, and various other parts.

  • PDF

The development of a micro robot system for robot soccer game (로봇 축구 대회를 위한 마이크로 로봇 시스템의 개발)

  • 이수호;김경훈;김주곤;조형석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.507-510
    • /
    • 1996
  • In this paper we present the multi-agent robot system developed for participating in micro robot soccer tournament. The multi-agent robot system consists of micro robot, a vision system, a host computer and a communication module. Mcro robot are equipped with two mini DC motors with encoders and gearboxes, a R/F receiver, a CPU and infrared sensors for obstacle detection. A vision system is used to recognize the position of the ball and opponent robots, position and orientation of our robots. The vision system is composed of a color CCD camera and a vision processing unit. Host computer is a Pentium PC, and it receives information from the vision system, generates commands for each robot using a robot management algorithm and transmits commands to the robots by the R/F communication module. And in order to achieve a given mission in micro robot soccer game, cooperative behaviors by robots are essential. Cooperative work between individual agents is achieved by the command of host computer.

  • PDF

The Recognition and Distance Estimation of a Golf Ball using a WebCam (웹캠을 이용한 골프공 인식 및 위치추정 시스템)

  • Zhu, Jiaqi;Chong, Jiang;Kim, Kang-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.12
    • /
    • pp.1833-1840
    • /
    • 2013
  • A golf ball collecting robot in a golf ball driving range has been recently required because it is safer and more economic than a human being. In this paper, the golf ball recognition and distance estimation system based on a neural network and OpenCV is developed for the robot. The simulation results show that the recognition ratio is over 87% for the distance of less than 120cm and accurate rate for distance estimation is over 85% for golf balls in 30-180cm from a webcam.

Embodiment of Effective Multi-Robot Control Algorithm Using Petri-Net (Petri-Net을 이용한 효과적인 다중로봇 제어알고리즘의 구현)

  • 선승원;국태용
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.11
    • /
    • pp.906-916
    • /
    • 2003
  • A multi-robot control algorithm using Petri-Net is proposed for 5vs5 robot soccer. The dynamic environment of robot soccer is modeled by defining the place and transition of each robot and converting it into Petri-Net diagram. Once all the places and transitions of robots are represented by the Petri-Net model, their actions can be chosen according to the roles of robots and position of the ball in soccer game, e.g., offensive, defensive and goalie robot. The proposed modeling method is implemented for soccer robot system. The efficiency and applicability of the proposed multiple-robot control algorithm using Petri-Net are demonstrated through 5vs5 Middle League SimuroSot soccer game.

Development of Tennis Training Machine in Ourdoor Environment with Human Tracking (사용자 추적 기능을 가진 야외용 테니스 훈련용 장치 개발)

  • Yang, Jeong-Yean
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.3
    • /
    • pp.424-431
    • /
    • 2020
  • This paper focused on the development of sports robot that detects a human player and shots a serve ball automatically. When robot technologies apply to the sports machine, the domain problems occurs such as outdoor environments and playing condition to recognize the visual and the vocal modalities. Gaussian mixture model and Kalman filter are used to detect the player's position in the left, right, and depth direction and to avoid the noises caused by the player's posture variation around the net. The sports robot is designed by the pan-tilt structure to shot a serve ball by pneumatic control under the multi layered software architecture. Finally, the proposed tracking and the machine performance are discussed by experimental results.