DOI QR코드

DOI QR Code

Design and Analysis of Ball Screw-driven Robotic Gripper

볼 나사 구동형 로봇 그리퍼 설계 및 특성 분석

  • Kim, Byoung-Ho (Biomimetics & Intelligent Robotics Lab., Dept. of Mechatronics Eng., Kyungsung Univ.)
  • 김병호 (경성대학교 메카트로닉스공학과 생체모방및지능로봇 연구실)
  • Received : 2011.12.19
  • Accepted : 2012.02.07
  • Published : 2012.02.25

Abstract

This paper presents a ball screw-driven robotic gripper mechanism which is possible to grasp an object and analyzes its kinematic feature for grasping by simulation. For the purpose of identifying the feature of the robot gripper, we try to confirm the kinematics relating the joint space of the driving actuator to the gripper's tip space. To be specific, the proposed robot gripper employs one actuator and a symmetrical closed-chain structure. As a result, the specified robot gripper has an advantage of robustness to external forces structurally, and it is easy to implement simple grasping operations. Also the gripper has a useful squeezing effect for power grasping.

본 논문에서는 볼 나사의 구동에 의해 물체의 파지가 가능한 로봇 그리퍼 메커니즘을 제시한 후, 시뮬레이션을 통하여 제시한 그리퍼 메커니즘의 파지 동작에서 나타날 수 있는 기구학적인 특성을 분석한다. 이를 위하여 구동기의 관절 공간과 그리퍼의 끝 공간간의 기구학적 관계를 파악한다. 제안한 로봇 그리퍼는 하나의 구동모터를 사용하고, 좌우 대칭인 폐체인(closed-chain)을 형성하고 있는 것이 특징이다. 결과적으로, 제안한 로봇 그리퍼는 구조적으로 외력에 강인하고, 하나의 구동모터에 의해 파지 동작이 구현되므로 수월한 파지가 가능하다. 또한 제안된 그리퍼는 파워 파지에 유용한 조임 효과를 갖는다.

Keywords

References

  1. Y. Sakagami, R. Watanabe, C. Aoyama, S. Matsunaga, N. Higaki, and K, Fujimura, "The intelligent ASIMO: system overview and integration," Proc. of IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 2478-2483, 2002.
  2. Y. Ogura, H. Aikawa, K. Shimomura, H. Kondo, A. Morishima, H.-O. Lim, and A, Takanishi, "Development of a new humanoid robot, WABIAN-2," Proc. of IEEE Int. Conf. on Robotics and Automation, pp. 2478-2483, 2002.
  3. I. W. Park, J.-Y. Kim, J. Lee, and J.-H. Oh, "Mechanical design of humanoid robot platform KHR-3 (KAIST humanoid robot-3: HUBO)," Proc. of IEEERAS Int. Conf. on Humanoid Robots, pp. 321-325, 2005.
  4. I. Mizuuchi, T. Yoshikai, Y. Sodeyama, Y. Nakanishi, A. Miyadera, T. Yamamoto, T. Niemela, M. Hayashi, J. Urata, Y. Namiki, T. Nishino, and M. Inaba, "Development of musculoskeletal humanoid Kotaro," Proc. of IEEE Int. Conf. on Robotics and Automation, pp. 82-87, 2006.
  5. S. Jacobsen, E. Iversen, D. Knutti, R. Jhonson, and K. Biggers, "Design of the Utah/MIT dextrous hand," Proc. of IEEE Int. Conf. on Robotics and Automation, pp. 1520-1532, 1986.
  6. C. S. Loucks, V. C. Johnson, P. T. Boissiere, G. P. Starr, and J. P. H. Steele, "Modeling and control of the Stanford/JPL hand," Proc. of IEEE Int. Conference on Robotics and Automation, pp. 573-578, 1987.
  7. M. S. Ali, K. J. Kyriakopoulos, and H. E. Step-hanou, "The kinematics of the Anthrobot-2 dextrous hand," Proc. of IEEE Int. Conference on Robotics and Automation, pp. 705-710, 1993.
  8. A. Caffaz and G. Cannata, "The design and development of the DIST-hand dextrous grapper," Proc. of IEEE Int. Conf. on Robotics and Automation, pp. 2075-2080, 1998.
  9. C. S. Lovchik and M. A. Diftler, "The Robonaut Hand: A dexterous robot hand for space," Proc. of IEEE Int. Conf. on Robotics and Automation, pp. 907-912, 1999.
  10. J. Butterfass, M. Grebenstein, H. Liu, and G. Hirzinger, "DLR-Hand II: Next generation of dextrous robot hand," Proc. of IEEE Int. Conf. on Robotics and Automation, pp. 109-114, 2001.
  11. M. Ebner and R. S.Wallace, "A direct-drive hand: design, modeling and control," Proc. of IEEE Int. Conf. on Robotics and Automation, pp. 1668-1763, 1995.
  12. B.-H. Kim, S.-R. Oh, B.-J. You, I. H. Suh, and H.-R. Choi, "Development of a new multi-fingered robot hand using ultrasonic motors and its control system," Jour. of Control, Automation and Systems Engineering, vol. 6, no. 4, pp. 327-332, 2000.
  13. H. Kawasaki, T. Komatsu, K. Uchiyama, and T. Kurimoto, "Dexterous anthropomorphic robot hand with distributed tactile sensor: Gifu hand II," IEEE/ASME Trans. on Mechatronics, vol. 7, no. 3, 2002.
  14. J. Ueda, Y. Ishida, M. Kondo, and T. Ogasawara, "Development of the NAIST-Hand with vision-based tactile fingertip sensor," Proc. of IEEE Int. Conf. on Robotics and Automation, pp. 2343-2348, 2005.
  15. I. Yamano and T. Maeno, "Five-fingered robot hand using ultrasonic motors and elastic elements," Proc. of IEEE Int. Conf. on Robotics and Automation, pp. 2684-2689, 2005.
  16. B.-H. Kim, "Neural learning-based inverse kinematics of a robotic finger," Jour. of Fuzzy Logic and Intelligent Sytems, vol. 17, no. 7, pp. 862-868, 2007. https://doi.org/10.5391/JKIIS.2007.17.7.862
  17. B.-H. Kim, "Task-based analysis on number of robotic fingers for compliant manipulations," Int. Jour. of Fuzzy Logic and Intelligent Sytems, vol. 9, no. 4, pp. 333-338, 2009. https://doi.org/10.5391/IJFIS.2009.9.4.333
  18. P. K. Wright and M. R. Cutkosky, Design of gripper, Handbook of Industrial Robot, pp. 96-111, 1985.
  19. T. Mason and J. K. Salisbury, Robot hands and the mechanics of manipulation, MIT press, Cambridge, MA, 1985.
  20. R. Kolluru, K. P. Valavanis, A. Stewart, andM. J. Sonnier, "A flat-surface robotic gripper for handling limp material," IEEE Robotics and Automation Magazine, pp. 19-26, 1995.
  21. A. I. Setiawan, T. F. Furukawa, and A. Preston, "A low-cost gripper for an apple picking robot," Proc. of IEEE Int. Conf. on Robotics and Automation, pp. 4448-4453, 2004.
  22. H. Choi and M. Koc, "Design and feasibility tests of a flexible gripper based on inflatable rubber pockets," Int. Jour. of Machine Tools & Manufacture, vol. 46, pp. 1350-1361, 2006. https://doi.org/10.1016/j.ijmachtools.2005.10.009
  23. M. Leu, V. Dukowski, and K. Wang, "An analytical and experimental study of the stiffness of robot manipulators with parallel mechanisms," in Robotics and Manufacturing Automation, M. Donath and M. Leu, Editors, ASME, New York, 1985.