• Title/Summary/Keyword: balancing control

Search Result 636, Processing Time 0.026 seconds

The effects of Balance Taping Therapy on Reducing Headache in Patients with Angina Pectoris Undergoing Nitrate IV Therapy (협심증 환자의 나이트레이트 정맥투여 시 두통완화를 위한 밸런스테이핑요법의 효과)

  • Kim, Kyung Hee;Kwon, Mi Kyung;Kim, Nam Sun;Lee, Kyu Eun;Jung, Myoung A;Lee, Geun Yeon;Jun, Eun Mi
    • Journal of Korean Clinical Nursing Research
    • /
    • v.19 no.3
    • /
    • pp.468-478
    • /
    • 2013
  • Purpose: The purpose of this study was to identify the effects of balancing taping therapy on reducing headache in patients with angina pectoris undergoing nitrate IV therapy. Methods: A non-equivalent control group non-synchronized design was used. A total of 50 patients with angina pectoris undergoing nitrate therapy at G hospital participated in the study. For measuring pain intensity, the Visual Analogy Scale (VAS) and Non-Verbal Pain Behavior Scale were used. Data were analyzed using SPSS 19.0 program. Results: No significant differences were observed between the experimental and control groups in pain intensity. However, the number of times of analgesics of experimental group was significantly lower than those of control group. Conclusion: Balance taping can be effective in pain for patients undergoing nitrate IV therapy. Therefore, utilizing the balance taping can be useful method to reduce headache in patients with angina pectoris during the IV therapy of nitrate.

A Stable Operation Strategy in Micro-grid Systems without Diesel Generators

  • Choi, Sung-Sik;Kang, Min-Kwan;Lee, Hu-Dong;Nam, Yang-Hyun;Rho, Dae-Seok
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.114-123
    • /
    • 2018
  • Recently, as one of the countermeasures to reduce carbon dioxide($CO_2$) for global warming problems, operation methods in micro-grid systems replacing diesel generator with renewable energy sources including wind power(WP) and photovoltaic(PV) system have been studied and presented in energetic manners. However, it is reported that some operation problems in micro-grid systems without diesel generator for carbon-free island are being occurred when large scaled WP systems are at start-up. To overcome these problems, this paper proposes an operation strategy in micro-grid systems by adapting control devices such as CVCF(constant voltage constant frequency) ESS(energy storage system) for constant frequency and voltage regulation, load control ESS for balancing demand and supply and SVC(static-var compensator) for reactive power compensation. From the simulation results based on the various operation scenarios, it is confirmed that the proposed operation strategy in micro-grid systems without diesel generators is a useful tool to perform a stable operation in micro-grid systems without diesel generator and also make a contribution to reduce carbon dioxide in micro-grid systems.

A Fair Flow Control For Baggage Handling System in Airport (공항 수하물 처리시스템의 균형적인 흐름제어 기법 연구)

  • Kim, Junbeom;Kim, Gukhwa;Chae, Junjae
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.10
    • /
    • pp.1317-1327
    • /
    • 2016
  • The baggage handling system (BHS) is one of the most complex system in the airport. A highly economical operating system is required to ensure its performance in consideration of its enormous cost on the extension. Furthermore, the inefficient operation deteriorates not only the system performance but the imbalance among the check-in counters because of a bottleneck on the conveyors downstream. The objective of this research is to improve the performance of both the BHS and the check-in area by efficiently controlling the flow in the merging area on the conveyors. Thus, we suggest a control logic of which the concept is borrowed from data networks. The simulation is used to analyze impacts of the conveyors bottleneck on the check-in area and optimize some parameters used in the suggested logic. We also discuss some observations from the simulation results into several aspects of performance measures.

A Comparative Study on the Immediate Effect of Single Limb Stance Exercise According to the Supporting Surface on the Dynamic Balance Ability and Abdominal Muscle Thickness of College Students in Their Twenties (지지면에 따른 한 발 서기 운동이 20대 대학생들의 동적 균형 능력과 배 근육 두께에 미치는 즉각적인 효과 비교 연구)

  • Park, Han-Kyu;Lee, Kyung-Soon;Park, Jin
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.9 no.1
    • /
    • pp.1-11
    • /
    • 2021
  • Purpose : The purpose of this study was to investigate the effect of single limb stance exercise according to the support surface on dynamic balance ability and abdominal muscle thickness. Methods : We recruited 28 healthy subjects in this study. Subjects were assigned to 2 groups by matching method. The control group was 5 males and 9 females, and single limb stance exercise was performed on the stable support surface. The experimental group consisted of 6 males and 8 females, and trained to stand on the unstable support. During the single limb stance exercise, the dominant foot was set as the foot that appeared numerically through the exercise of the dynamic balance meter (Biorescue). Single limb stance exercise along the supporting surface was maintained for 15 seconds and then rested for 15 seconds. It was repeated 5 times. Particularly, the balance exercise on the unstable support surface was sufficiently practiced. Independent t test was performed for comparison between groups. Paired t test was performed to compare before and after each group. Results : There was no difference between the control group and the experimental group in the comparison of dynamic balance ability (p>.05). However, there were significant differences before and after exercise in both the control and experimental groups (p<.05). Similarly, in the comparison of abdominal muscle thickness, there was a significant difference within each group, especially internal oblique and transverse abdominis (p<.05), and no difference between groups (p>.05). Conclusion : Based on these results, although there was no difference between the groups, in the experimental group, numerical increase in dynamic balance ability and abdominal muscle thickness was confirmed. Therefore, single limb stance exercise on the unstable support surfaces activates core muscles and has a positive effect on dynamic balancing ability.

An Analysis and Comparison on Efficiency of Load Distribution Algorithm in a Clustered System (클러스터 시스템의 부하분산 알고리즘의 효율성 비교분석)

  • Kim, Seok-Chan;Rhee, Young
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.12 no.2
    • /
    • pp.111-118
    • /
    • 2006
  • In this thesis, we analyze the efficiency of the algorithm to distribute the load in the clustered system, by comparing with the existed algorithm. PWLC algorithm detects each server's load in the system at weighted period, and following the detection of the loads, a set of weights is given to each server. The system allocates new loads to each server according to its weight. PWLC algorithm is compared with DWRR algorithm in terms of variance, waiting time by varying weighted Period. When the weighted period is too short, the system bears a heavy load for detecting load over time. On the other hand, when the weighted period is too long, the load balancing control of the system becomes ineffective. The analysis shows PWLC algorithm is more efficient than DWRR algorithm for the variance and waiting time.

Low-Voltage-Stress AC-Linked Charge Equalizing System for Series-Connected VRLA Battery Strings

  • Karnjanapiboon, Charnyut;Jirasereeamornkul, Kamon;Monyakul, Veerapol
    • Journal of Power Electronics
    • /
    • v.13 no.2
    • /
    • pp.186-196
    • /
    • 2013
  • This paper presents a low voltage-stress AC-linked charge equalizing system for balancing the energy in a serially connected, valve-regulated lead acid battery string using a modular converter that consists of multiple transformers coupled together. Each converter was coupled through an AC-linked bus to increase the overall energy transfer efficiency of the system and to eliminate the problem of the unbalanced charging of batteries. Previous solutions are based on centralized and modularized topologies. A centralized topology requires a redesign of the hardware and related components. It also faces a high voltage stress when the number of batteries is expanded. Modularized solutions use low-voltage-stress, double-stage, DC-linked topologies which leads to poor energy transfer efficiency. The proposed solution uses a low-voltage stress, AC-linked, modularized topology that makes adding more batteries easier. It also has a better energy transfer efficiency. To ensure that the charge equalization system operates smoothly and safely charges batteries, a small intelligent microcontroller was used in the control section. The efficiency of this charge equalization system is 85%, which is 21% better than other low-voltage-stress DC-linked charging techniques. The validity of this approach was confirmed by experimental results.

Performance Analysis of a Novel Reduced Switch Cascaded Multilevel Inverter

  • Nagarajan, R.;Saravanan, M.
    • Journal of Power Electronics
    • /
    • v.14 no.1
    • /
    • pp.48-60
    • /
    • 2014
  • Multilevel inverters have been widely used for high-voltage and high-power applications. Their performance is greatly superior to that of conventional two-level inverters due to their reduced total harmonic distortion (THD), lower switch ratings, lower electromagnetic interference, and higher dc link voltages. However, they have some disadvantages such as an increased number of components, a complex pulse width modulation control method, and a voltage-balancing problem. In this paper, a novel nine-level reduced switch cascaded multilevel inverter based on a multilevel DC link (MLDCL) inverter topology with reduced switching components is proposed to improve the multilevel inverter performance by compensating the above mentioned disadvantages. This topology requires fewer components when compared to diode clamped, flying capacitor and cascaded inverters and it requires fewer carrier signals and gate drives. Therefore, the overall cost and circuit complexity are greatly reduced. This paper presents modulation methods by a novel reference and multicarrier based PWM schemes for reduced switch cascaded multilevel inverters (RSCMLI). It also compares the performance of the proposed scheme with that of conventional cascaded multilevel inverters (CCMLI). Simulation results from MATLAB/SIMULINK are presented to verify the performance of the nine-level RSCMLI. Finally, a prototype of the nine-level RSCMLI topology is built and tested to show the performance of the inverter through experimental results.

Development of a Biped Walking Robot Actuated by a Closed-Chain Mechanism

  • Choi, Hyeung-Sik;Oh, Jung-Min;Baek, Chang-Yul;Chung, Kyung-Sik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.209-214
    • /
    • 2003
  • We developed a new type of human-sized BWR (biped walking robot), named KUBIR1 which is driven by the closed-chain type of actuator. A new type of the closed-chain actuator for the robot is developed, which is composed of the four-bar-link mechanism driven by the ball screw which has high strength and high gear ratio. Each leg of the robot is composed of 6 D.O.F joints. For front walking, three pitch joints and one roll joint at the ankle. In addition to this, one yaw joint for direction change, and another roll joint for balancing the body are attached. Also, the robot has two D.O.F joints of each hand and three D.O.F. for eye motion. There are three actuating motors for stereo cameras for eyes. In all, a 18 degree-of-freedom robot was developed. KUBIR1 was designed to walk autonomously by adapting small 90W DC motors as the robot actuators and batteries and controllers are on-boarded. The whole weight for Kubir1 is over 90Kg, and height is 167Cm. In the paper, the performance test of KUBIR1 will be shown.

  • PDF

Transposable Elements and Genome Size Variations in Plants

  • Lee, Sung-Il;Kim, Nam-Soo
    • Genomics & Informatics
    • /
    • v.12 no.3
    • /
    • pp.87-97
    • /
    • 2014
  • Although the number of protein-coding genes is not highly variable between plant taxa, the DNA content in their genomes is highly variable, by as much as 2,056-fold from a 1C amount of 0.0648 pg to 132.5 pg. The mean 1C-value in plants is 2.4 pg, and genome size expansion/contraction is lineage-specific in plant taxonomy. Transposable element fractions in plant genomes are also variable, as low as ~3% in small genomes and as high as ~85% in large genomes, indicating that genome size is a linear function of transposable element content. Of the 2 classes of transposable elements, the dynamics of class 1 long terminal repeat (LTR) retrotransposons is a major contributor to the 1C value differences among plants. The activity of LTR retrotransposons is under the control of epigenetic suppressing mechanisms. Also, genome-purging mechanisms have been adopted to counter-balance the genome size amplification. With a wealth of information on whole-genome sequences in plant genomes, it was revealed that several genome-purging mechanisms have been employed, depending on plant taxa. Two genera, Lilium and Fritillaria, are known to have large genomes in angiosperms. There were twice times of concerted genome size evolutions in the family Liliaceae during the divergence of the current genera in Liliaceae. In addition to the LTR retrotransposons, non-LTR retrotransposons and satellite DNAs contributed to the huge genomes in the two genera by possible failure of genome counter-balancing mechanisms.

Model Validation and Controller Design for Vibration Suppression of Flexible Rotor Using AMB

  • Soo Jeon;Ahn, Hyeong-Joon;Han, Dong-Chul
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.12
    • /
    • pp.1583-1593
    • /
    • 2002
  • This paper discusses the model validation and vibration suppression of an AMB flexible rotor via additional LQG controller. The main difficulty in the vibration suppression of the flexible rotor using AMB is to realize a controller that can minimize resonance without injuring the stabilized rigid modes. In order to solve this problem, simple scheme for system modeling and controller design are developed. Firstly, the AMB flexible rotor is stabilized with a PID controller, which leads to a new stable rotor-bearing system. Then, authors propose the model validation procedure using measured open-loop frequency responses to obtain an accurate model of the AMB flexible rotor system. After that, LQG controller with modal weighting is designed to suppress resonances of the stable rotor-bearing system. Due to the poor controllability and observability of flexible modes compared to rigid ones, balancing of two Gramians is prerequisite for the fair LQG controller design. Simulation with step disturbance and experimental results of unbalance response up to 10,000 rpm verified the effectiveness of the proposed scheme.