Browse > Article
http://dx.doi.org/10.5808/GI.2014.12.3.87

Transposable Elements and Genome Size Variations in Plants  

Lee, Sung-Il (Department of Molecular Bioscience, Kangwon National University)
Kim, Nam-Soo (Department of Molecular Bioscience, Kangwon National University)
Abstract
Although the number of protein-coding genes is not highly variable between plant taxa, the DNA content in their genomes is highly variable, by as much as 2,056-fold from a 1C amount of 0.0648 pg to 132.5 pg. The mean 1C-value in plants is 2.4 pg, and genome size expansion/contraction is lineage-specific in plant taxonomy. Transposable element fractions in plant genomes are also variable, as low as ~3% in small genomes and as high as ~85% in large genomes, indicating that genome size is a linear function of transposable element content. Of the 2 classes of transposable elements, the dynamics of class 1 long terminal repeat (LTR) retrotransposons is a major contributor to the 1C value differences among plants. The activity of LTR retrotransposons is under the control of epigenetic suppressing mechanisms. Also, genome-purging mechanisms have been adopted to counter-balance the genome size amplification. With a wealth of information on whole-genome sequences in plant genomes, it was revealed that several genome-purging mechanisms have been employed, depending on plant taxa. Two genera, Lilium and Fritillaria, are known to have large genomes in angiosperms. There were twice times of concerted genome size evolutions in the family Liliaceae during the divergence of the current genera in Liliaceae. In addition to the LTR retrotransposons, non-LTR retrotransposons and satellite DNAs contributed to the huge genomes in the two genera by possible failure of genome counter-balancing mechanisms.
Keywords
C-value; DNA transposable elements; genome-purging; genome size; LTR retrotransposons;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Bennett MD, Leitch IJ. Plant DNA C-value Database (release 6.0. December 2012). Surrey: Kew. Accessed 2014 Jul 18. Available from: http://data.kew.org/cvalues/.
2 Bennett MD, Leitch IJ. Nuclear DNA amounts in angiosperms: targets, trends and tomorrow. Ann Bot 2011;107:467-590.   DOI
3 Michael TP, Jackson S. The first 50 plant genomes. Plant Genome 2013;6. http://dx.doi.org/10.3835/plantgenome2013.03.0001in.
4 Doolittle WF, Sapienza C. Selfish genes, the phenotype paradigm and genome evolution. Nature 1980;284:601-603.   DOI
5 Orgel LE, Crick FH. Selfish DNA: the ultimate parasite. Nature 1980;284:604-607.   DOI
6 Volff JN. Turning junk into gold: domestication of transposable elements and the creation of new genes in eukaryotes. Bioessays 2006;28:913-922.   DOI   ScienceOn
7 Feschotte C, Pritham EJ. DNA transposons and the evolution of eukaryotic genomes. Annu Rev Genet 2007;41:331-368.   DOI   ScienceOn
8 Oliver KR, McComb JA, Greene WK. Transposable elements: powerful contributors to angiosperm evolution and diversity. Genome Biol Evol 2013;5:1886-1901.   DOI
9 Waring M, Britten RJ. Nucleotide sequence repetition: a rapidly reassociating fraction of mouse DNA. Science 1966;154:791-794.   DOI
10 Britten RJ, Kohne DE. Repeated sequences in DNA: hundreds of thousands of copies of DNA sequences have been incorporated into the genomes of higher organisms. Science 1968;161:529-540.   DOI
11 Peterson DG, Wessler SR, Paterson AH. Efficient capture of unique sequences from eukaryotic genomes. Trends Genet 2002;18:547-550.   DOI
12 Yuan Y, SanMiguel PJ, Bennetzen JL. High-Cot sequence analysis of the maize genome. Plant J 2003;34:249-255.   DOI
13 Lamoureux D, Peterson DG, Li W, Fellers JP, Gill BS. The efficacy of Cot-based gene enrichment in wheat (Triticum aestivum L.). Genome 2005;48:1120-1126.   DOI
14 Heslop-Harrison JS. Comparative genome organization in plants: from sequence and markers to chromatin and chromosomes. Plant Cell 2000;12:617-636.   DOI   ScienceOn
15 Heslop-Harrison JS, Schimidt T. Plant nuclear genome composition. eLS 2012 Aug 15 [Epub]. http://dx.doi.org/10.1002/9780470015902.a0002014.pub2.
16 Lee SI, Park KC, Son JH, Hwang YJ, Lim KB, Song YS, et al. Isolation and characterization of novel Ty1-copia-like retrotransposons from lily. Genome 2013;56:495-503.   DOI
17 McKnight TD, Shippen DE. Plant telomere biology. Plant Cell 2004;16:794-803.   DOI
18 Kaochar S, Tu BP. Gatekeepers of chromatin: small metabolites elicit big changes in gene expression. Trends Biochem Sci 2012;37:477-483.   DOI
19 McClintock B. The association of mutants with homozygous deficiencies in Zea mays. Genetics 1941;26:542-571.
20 McClintock B. The stability of broken ends of chromosomes in Zea mays. Genetics 1941;26:234-282.
21 McClintock B. The fusion of broken ends of chromosomes following nuclear fusion. Proc Natl Acad Sci U S A 1942;28:458-463.   DOI
22 McClintock B. Mutable loci in maize. Year B Carnegie Inst Wash 1948;47:155-169.
23 Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, et al. A unified classification system for eukaryotic transposable elements. Nat Rev Genet 2007;8:973-982.   DOI   ScienceOn
24 Wessler SR, Bureau TE, White SE. LTR-retrotransposons and MITEs: important players in the evolution of plant genomes. Curr Opin Genet Dev 1995;5:814-821.   DOI   ScienceOn
25 Kejnovsky E, Hawkins JS, Feschotte C. Plant transposable elements: biology and evolution. In: Plant Genome Diversity. Vol. 1 (Wendel JF, Greilhuber J, Dolezel J, Leitch IJ, eds.). Wien: Springer Verlag, 2012. pp. 17-34.
26 Fedoroff NV. Presidential address. Transposable elements, epigenetics, and genome evolution. Science 2012;338:758-767.   DOI
27 Finnegan DJ. Eukaryotic transposable elements and genome evolution. Trends Genet 1989;5:103-107.   DOI   ScienceOn
28 Michael TP. Plant genome size variation: bloating and purging DNA. Brief Funct Genomics 2014;13:308-317.   DOI
29 Voytas DF, Boeke JD. Ty1 and Ty5 of Saccharomyces cereviceae. In: Mobile DNA II (Craig NL, Craigie R, Gellert M, Lambowitz AM, eds.). Washington, DC: ASM Press, 2002. pp. 631-662.
30 Sandmeyer SB, Aye M, Menees T. Ty3, a position-specific, gypsy-like element in Saccharomyces cerevisiae. In: Mobile DNA II (Craig NL, Craigie R, Gellert M, Lambowitz AM, eds.). Washington, DC: ASM Press, 2002. pp. 663-683.
31 Schulman AH, Wicker T. A field guide to transposable elements. In: Plant Transposons and Genome Dynamics in Evolution (Fedoroff NV, ed.). Oxford: Wiley Blackwell, 2013. pp. 15-40.
32 Eickbush TH, Malik HS. Origin and evolution of retrotransposons. In: Mobile DNA II (Craig NL, Craigie R, Gellert M, Lambowitz AM, eds.). Washington, DC: ASM Press, 2002. pp. 1111-1146.
33 Havecker ER, Gao X, Voytas DF. The diversity of LTR retrotransposons. Genome Biol 2004;5:225.   DOI
34 Levin HL. Newly identified retrotransposons of Ty3/gypsy class in fungi, plants, and vertebrates. In: Mobile DNA II (Craig NL, Craigie R, Gellert M, Lambowitz AM, eds.). Washington, DC: ASM Press, 2002. pp. 684-701.
35 Rowold DJ, Herrera RJ. Alu elements and the human genome. Genetica 2000;108:57-72.   DOI
36 Bureau TE, Wessler SR. Stowaway: a new family of inverted repeat elements associated with the genes of both monocotyledonous and dicotyledonous plants. Plant Cell 1994;6: 907-916.   DOI   ScienceOn
37 Tanskanen JA, Sabot F, Vicient C, Schulman AH. Life without GAG: the BARE-2 retrotransposon as a parasite's parasite. Gene 2007;390:166-174.   DOI
38 Bureau TE, Wessler SR. Tourist: a large family of small inverted repeat elements frequently associated with maize genes. Plant Cell 1992;4:1283-1294.   DOI   ScienceOn
39 Bureau TE, Wessler SR. Mobile inverted-repeat elements of the Tourist family are associated with the genes of many cereal grasses. Proc Natl Acad Sci U S A 1994;91:1411-1415.   DOI   ScienceOn
40 Feschotte C, Zhang X, Wessler SR. Miniature-inverted repeat transposable elements and their relationship to established DNA transposons. In: Mobile DNA II (Craig NL, Craigie R, Gellert M, Lambowitz AM, eds.). Washington, DC, ASM Press, 2002. pp. 1147-1158.
41 Greilhuber J, Dolezel J, Lysak MA, Bennett MD. The origin, evolution and proposed stabilization of the terms 'genome size' and 'C-value' to describe nuclear DNA contents. Ann Bot 2005;95:255-260.   DOI
42 Pellicer J, Fay MF, Leitch IJ. The largest eukaryotic genome of them all? Bot J Linn Soc 2010;164:10-15.   DOI
43 Corradi N, Pombert JF, Farinelli L, Didier ES, Keeling PJ. The complete sequence of the smallest known nuclear genome from the microsporidian Encephalitozoon intestinalis. Nat Commun 2010;1:77.
44 Hendrix B, Stewart JM. Estimation of the nuclear DNA content of Gossypium species. Ann Bot 2005;95:789-797.   DOI
45 Thomas CA Jr. The genetic organization of chromosomes. Annu Rev Genet 1971;5:237-256.   DOI   ScienceOn
46 Gregory TR, Nicol JA, Tamm H, Kullman B, Kullman K, Leitch IJ, et al. Eukaryotic genome size databases. Nucleic Acids Res 2007;35:D332-D338.   DOI
47 Ibarra-Laclette E, Lyons E, Hernandez-Guzman G, Perez- Torres CA, Carretero-Paulet L, Chang TH, et al. Architecture and evolution of a minute plant genome. Nature 2013;498:94-98.   DOI
48 Zedek F, Smerda J, Smarda P, Bures P. Correlated evolution of LTR retrotransposons and genome size in the genus Eleocharis. BMC Plant Biol 2010;10:265.   DOI
49 Proost S, Pattyn P, Gerats T, Van de Peer Y. Journey through the past: 150 million years of plant genome evolution. Plant J 2011;66:58-65.   DOI   ScienceOn
50 El Baidouri M, Panaud O. Comparative genomic paleontology across plant kingdom reveals the dynamics of TE-driven genome evolution. Genome Biol Evol 2013;5:954-965.   DOI
51 Nystedt B, Street NR, Wetterbom A, Zuccolo A, Lin YC, Scofield DG, et al. The Norway spruce genome sequence and conifer genome evolution. Nature 2013;497:579-584.   DOI   ScienceOn
52 Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, et al. The B73 maize genome: complexity, diversity, and dynamics. Science 2009;326:1112-1115.   DOI   ScienceOn
53 Plasterk RH, van Luenen HG. The Tc1/mariner family of transposable elements. In: Mobile DNA II (Craig NL, Craigie R, Gellert M, Lambowitz AM, eds.). Washington, DC: ASM Press, 2002. pp. 519-532.
54 Naito K, Cho E, Yang G, Campbell MA, Yano K, Okumoto Y, et al. Dramatic amplification of a rice transposable element during recent domestication. Proc Natl Acad Sci U S A 2006;103:17620-17625.   DOI
55 Naito K, Zhang F, Tsukiyama T, Saito H, Hancock CN, Richardson AO, et al. Unexpected consequences of a sudden and massive transposon amplification on rice gene expression. Nature 2009;461:1130-1134.   DOI
56 Civan P, Svec M, Hauptvogel P. On the coevolution of transposable elements and plant genomes. J Bot 2011;2011: 893546.
57 Bennetzen JL, Kellogg EA. Do plants have a one-way ticket to genomic obesity? Plant Cell 1997;9:1509-1514.   DOI
58 Bennett MD. Variation in genomic form in plants and its ecological implications. New Phytol 1987;106:177-200.
59 Knight CA, Molinari NA, Petrov DA. The large genome constraint hypothesis: evolution, ecology and phenotype. Ann Bot 2005;95:177-190.   DOI   ScienceOn
60 Wahl LM, DeHaan CS. Fixation probability favors increased fecundity over reduced generation time. Genetics 2004;168:1009-1018.   DOI
61 Kim YJ, Lee J, Han K. Transposable elements: no more 'junk DNA'. Genomics Inform 2012;10:226-233.   DOI
62 Dooner HK, Weil CF. Transposon and gene creation. In: Plant Transposons and Genome Dynamics in Evolution (Fedoroff NV, ed.). Ames: Wiley-Blackwell Inc., 2013. pp. 143-164.
63 Levy AA. Transposon in plant speciation. In: Plant Transposons and Genome Dynamics in Evolution (Fedoroff NV, ed.). Ames: Wiley-Blackwell Inc., 2013. pp. 165-180.
64 Grover CE, Wendel JF. Recent insights into mechanisms of genome size change in plants. J Bot 2010;2010:382732.
65 Hawkins JS, Proulx SR, Rapp RA, Wendel JF. Rapid DNA loss as a counterbalance to genome expansion through retrotransposon proliferation in plants. Proc Natl Acad Sci U S A 2009;106:17811-17816.   DOI
66 Devos KM, Brown JK, Bennetzen JL. Genome size reduction through illegitimate recombination counteracts genome expansion in Arabidopsis. Genome Res 2002;12:1075-1079.   DOI
67 Ma J, Devos KM, Bennetzen JL. Analyses of LTR-retrotransposon structures reveal recent and rapid genomic DNA loss in rice. Genome Res 2004;14:860-869.   DOI
68 Vitte C, Panaud O, Quesneville H. LTR retrotransposons in rice (Oryza sativa, L.): recent burst amplifications followed by rapid DNA loss. BMC Genomics 2007;8:218.   DOI
69 Kovach A, Wegrzyn JL, Parra G, Holt C, Bruening GE, Loopstra CA, et al. The Pinus taeda genome is characterized by diverse and highly diverged repetitive sequences. BMC Genomics 2010;11:420.   DOI
70 Piegu B, Guyot R, Picault N, Roulin A, Sanyal A, Kim H, et al. Doubling genome size without polyploidization: dynamics of retrotransposition-driven genomic expansions in Oryza australiensis, a wild relative of rice. Genome Res 2006;16:1262-1269.   DOI   ScienceOn
71 Leitch IJ, Beaulieu JM, Cheung K, Hanson L, Lysak MA, Fay MF. Punctuated genome size evolution in Liliaceae. J Evol Biol 2007;20:2296-2308.   DOI
72 Patterson TB, Givnish TJ. Phylogeny, concerted convergence, and phylogenetic niche conservatism in the core Liliales: insights from rbcL and ndhF sequence data. Evolution 2002;56:233-252.   DOI
73 Pagel M, Venditti C, Meade A. Large punctuational contribution of speciation to evolutionary divergence at the molecular level. Science 2006;314:119-121.   DOI
74 Givnish TJ, Pires JC, Graham SW, McPherson MA, Prince LM, Patterson TB, et al. Phylogenetic relationships of monocots based on the highly informative plastid gene ndhF: evidence for widespread concerted convergence. Aliso 2006;22:28-51.   DOI
75 Oliver MJ, Petrov D, Ackerly D, Falkowski P, Schofield OM. The mode and tempo of genome size evolution in eukaryotes. Genome Res 2007;17:594-601.   DOI
76 Joseph JL, Sentry JW, Smyth DR. Interspecies distribution of abundant DNA sequences in Lilium. J Mol Evol 1990;30:146-154.   DOI
77 Smyth DR. Dispersed repeats in plant genomes. Chromosoma 1991;100:355-359.   DOI
78 Leeton PR, Smyth DR. An abundant LINE-like element amplified in the genome of Lilium speciosum. Mol Gen Genet 1993;237:97-104.
79 Ambrozova K, Mandakova T, Bures P, Neumann P, Leitch IJ, Koblizkova A, et al. Diverse retrotransposon families and an AT-rich satellite DNA revealed in giant genomes of Fritillaria lilies. Ann Bot 2011;107:255-268.   DOI
80 Capy P, Bazin C, Higuet D, Langin T. Dynamic and Evolution of Transposable Elements. Austin: Library of Congress, 1998.
81 Nassif N, Penney J, Pal S, Engels WR, Gloor GB. Efficient copying of nonhomologous sequences from ectopic sites via P-element-induced gap repair. Mol Cell Biol 1994;14:1613-1625.   DOI
82 Hickman AB, Perez ZN, Zhou L, Musingarimi P, Ghirlando R, Hinshaw JE, et al. Molecular architecture of a eukaryotic DNA transposase. Nat Struct Mol Biol 2005;12:715-721.   DOI
83 Keith JH, Schaeper CA, Fraser TS, Fraser MJ Jr. Mutational analysis of highly conserved aspartate residues essential to the catalytic core of the piggyBac transposase. BMC Mol Biol 2008;9:73.   DOI
84 Du C, Swigonova Z, , Messing J. Retrotranspositions in orthologous regions of closely related grass species. BMC Evol Biol 2006;6:62.   DOI
85 Lai J, Li Y, Messing J, Dooner HK. Gene movement by Helitron transposons contributes to the haplotype variability of maize. Proc Natl Acad Sci U S A 2005;102:9068-9073.   DOI
86 Morgante M, Brunner S, Pea G, Fengler K, Zuccolo A, Rafalski A. Gene duplication and exon shuffling by helitron-like transposons generate intraspecies diversity in maize. Nat Genet 2005;37:997-1002.   DOI
87 Du C, Fefelova N, Caronna J, He L, Dooner HK. The polychromatic Helitron landscape of the maize genome. Proc Natl Acad Sci U S A 2009;106:19916-19921.   DOI
88 Jones RN. McClintock's controlling elements: the full story. Cytogenet Genome Res 2005;109:90-103.   DOI
89 Sabot F, Schulman AH. Parasitism and the retrotransposon life cycle in plants: a hitchhiker's guide to the genome. Heredity (Edinb) 2006;97:381-388.   DOI
90 Manninen I, Schulman AH. BARE-1, a copia-like retroelement in barley (Hordeum vulgare L.). Plant Mol Biol 1993;22:829-846.   DOI   ScienceOn
91 Hu TT, Pattyn P, Bakker EG, Cao J, Cheng JF, Clark RM, et al. The Arabidopsis lyrata genome sequence and the basis of rapid genome size change. Nat Genet 2011;43:476-481.   DOI   ScienceOn
92 Chen J, Huang Q, Gao D, Wang J, Lang Y, Liu T, et al. Whole-genome sequencing of Oryza brachyantha reveals mechanisms underlying Oryza genome evolution. Nat Commun 2013;4:1595.   DOI
93 Fawcett JA, Rouze P, Van de Peer Y. Higher intron loss rate in Arabidopsis thaliana than A. lyrata is consistent with stronger selection for a smaller genome. Mol Biol Evol 2012;29:849-859.   DOI
94 Hollister JD, Gaut BS. Epigenetic silencing of transposable elements: a trade-off between reduced transposition and deleterious effects on neighboring gene expression. Genome Res 2009;19:1419-1428.   DOI
95 Yang YF, Zhu T, Niu DK. Association of intron loss with high mutation rate in Arabidopsis: implications for genome size evolution. Genome Biol Evol 2013;5:723-733.   DOI
96 Smyth DR, Kalitsis P, Joseph JL, Sentry JW. Plant retrotransposon from Lilium henryi is related to Ty3 of yeast and the gypsy group of Drosophila. Proc Natl Acad Sci U S A 1989;86:5015-5019.   DOI
97 Kato M, Miura A, Bender J, Jacobsen SE, Kakutani T. Role of CG and non-CG methylation in immobilization of transposons in Arabidopsis. Curr Biol 2003;13:421-426.   DOI   ScienceOn
98 Hollister JD, Smith LM, Guo YL, Ott F, Weigel D, Gaut BS. Transposable elements and small RNAs contribute to gene expression divergence between Arabidopsis thaliana and Arabidopsis lyrata. Proc Natl Acad Sci U S A 2011;108:2322-2327.   DOI
99 Slotkin RK, Martienssen R. Transposable elements and the epigenetic regulation of the genome. Nat Rev Genet 2007;8:272-285.
100 Matzke MA, Birchler JA. RNAi-mediated pathways in the nucleus. Nat Rev Genet 2005;6:24-35.   DOI