• 제목/요약/키워드: bacteriophages

검색결과 108건 처리시간 0.021초

Direct-fed Enterococcus faecium plus bacteriophages as substitutes for pharmacological zinc oxide in weanling pigs: effects on diarrheal score and growth

  • Oh, Sang-Hyon;Jang, Jae-Cheol;Lee, Chul Young;Han, Jeong Hee;Park, Byung-Chul
    • Animal Bioscience
    • /
    • 제35권11호
    • /
    • pp.1752-1759
    • /
    • 2022
  • Objective: Effects of direct-fed Enterococcus faecium plus bacteriophages (EF-BP) were investigated as potential substitutes for pharmacological ZnO for weanling pigs. Methods: Dietary treatments were supplementations to a basal diet with none (NC), 3,000-ppm ZnO (PC), 1×1010 colony-forming units of E. faecium plus 1×108 plaque-forming units (PFU) of anti-Salmonella typhimurium bacteriophages (ST) or 1×106 PFU of each of anti-enterotoxigenic Escherichia coli K88 (F4)-, K99 (F5)-, and F18-type bacteriophages (EC) per kg diet. In Exp 1, twenty-eight 21-day-old crossbred weanling pigs were individually fed one of the experimental diets for 14 days and euthanized for histological examination on intestinal mucosal morphology. In Exp 2, 128 crossbred weanling pigs aged 24 days were group-fed the same experimental diets in 16 pens of 8 piglets on a farm with a high incidence of post-weaning diarrhea. Results: None of the diarrheal score or fecal consistency score (FCS), average daily gain (ADG), gain: feed ratio, structural variables of the intestinal villus, and goblet cell density, differed between the EF-BP (ST+EC) and NC groups, between EF-BP and PC, or between ST and EC, with the exception of greater gain: feed for EF-BP than for PC (p<0.05) during days 7 to 14 (Exp 1). In Exp 2, ADG was less for EF-BP vs PC during days 0 to 7 and greater for EF-BP vs NC during days 7 to 14. FCS peaked on day 7 and declined by day 14. Moreover, FCS was less for EF-BP vs NC, did not differ between EF-BP and PC, and tended to be greater for ST vs EC (p = 0.099). Collectively, EF-BP was comparable to or slightly less effective than PC in alleviating diarrhea and growth check of the weanling pigs, with ST almost as effective as PC, when they were group-fed. Conclusion: The E. faecium-bacteriophage recipe, especially E. faecium-anti-S. typhimurium, is promising as a potential substitute for pharmacological ZnO.

First Isolation and Molecular Characterization of Bacteriophages Infecting Acidovorax citrulli, the Causal Agent of Bacterial Fruit Blotch

  • Rahimi-Midani, Aryan;Lee, Yong Seok;Kang, Se-Won;Kim, Mi-Kyeong;Choi, Tae-Jin
    • The Plant Pathology Journal
    • /
    • 제34권1호
    • /
    • pp.59-64
    • /
    • 2018
  • Bacteriophages of Acidovorax citrulli, the causal agent of bacterial fruit blotch, were isolated from 39 watermelon, pumpkin, and cucumber leaf samples collected from various regions of Korea and tested against 18 A. citrulli strains. Among the six phages isolated, ACP17 forms the largest plaque, and exhibits the morphology of phages in the Myoviridae family with a head diameter of $100{\pm}5nm$ and tail length of $150{\pm}5nm$. ACP17 has eclipse and latent periods of $25{\pm}5min$ and $50{\pm}5min$, respectively, and a burst size of 120. The genome of ACP17 is 156,281 base pairs with a G + C content of 58.7%, 263 open reading frames, and 4 transfer RNA genes. Blast search and phylogenetic analysis of the major capsid protein showed that ACP17 has limited homology to two Stentrophomonas phages, suggesting that ACP17 is a new type of Myoviridae isolated from A. citrulli.

Recent Insights into Aeromonas salmonicida and Its Bacteriophages in Aquaculture: A Comprehensive Review

  • Park, Seon Young;Han, Jee Eun;Kwon, Hyemin;Park, Se Chang;Kim, Ji Hyung
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권10호
    • /
    • pp.1443-1457
    • /
    • 2020
  • The emergence and spread of antimicrobial resistance in pathogenic bacteria of fish and shellfish have caused serious concerns in the aquaculture industry, owing to the potential health risks to humans and animals. Among these bacteria, Aeromonas salmonicida, which is one of the most important primary pathogens in salmonids, is responsible for significant economic losses in the global aquaculture industry, especially in salmonid farming because of its severe infectivity and acquisition of antimicrobial resistance. Therefore, interest in the use of alternative approaches to prevent and control A. salmonicida infections has increased in recent years, and several applications of bacteriophages (phages) have provided promising results. For several decades, A. salmonicida and phages infecting this fish pathogen have been thoroughly investigated in various research areas including aquaculture. The general overview of phage usage to control bacterial diseases in aquaculture, including the general advantages of this strategy, has been clearly described in previous reviews. Therefore, this review specifically focuses on providing insights into the phages infecting A. salmonicida, from basic research to biotechnological application in aquaculture, as well as recent advances in the study of A. salmonicida.

Isolation and Characterization of Bacteriophages Infecting Ralstonia solanacearum from Potato Fields

  • Lee, Jihyun;Park, Tae-Ho
    • 식물병연구
    • /
    • 제22권4호
    • /
    • pp.236-242
    • /
    • 2016
  • Bacterial wilt caused by Ralstonia solanacearum is one of the most devastating diseases in major Solanaceae crops. The pathogen is easily disseminated and survives for many years in plant farming system. Although chemicals are applied to control the disease, they are of limited efficacy and cause several problems. Therefore, the use of phage therapy has been suggested to control the disease as a biological agent. In this study, we discovered bacteriophages lysing diverse Ralstonia isolates from plant and soil samples obtained from the potato cultivated field in Jeju. Three times repeated pickings of plaques resulted in obtaining 173 single phages showing diverse spectrum of host-specificity. With the results, 12 core phages were selected and dendrogram was generated. Genetic diversity of the selected phages was also confirmed by AFLP (Amplified Fragment of Length Polymorphism) fingerprinting. The stability of the phages was investigated in various temperatures and various conditions of pH in vitro. The phages were stable at $16^{\circ}C-44^{\circ}C$ and pH 6-10. Morphological characterization of the phages revealed they were all classified into the Podoviridae, but had diverse head sizes. The results of this research will contribute to control the disease and further researches regarding genetic and molecular aspects will facilitate understanding phage and bacteria interaction.

Characterization of the Lytic Bacteriophage phiEaP-8 Effective against Both Erwinia amylovora and Erwinia pyrifoliae Causing Severe Diseases in Apple and Pear

  • Park, Jungkum;Lee, Gyu Min;Kim, Donghyuk;Park, Duck Hwan;Oh, Chang-Sik
    • The Plant Pathology Journal
    • /
    • 제34권5호
    • /
    • pp.445-450
    • /
    • 2018
  • Bacteriophages, bacteria-infecting viruses, have been recently reconsidered as a biological control tool for preventing bacterial pathogens. Erwinia amylovora and E. pyrifoliae cause fire blight and black shoot blight disease in apple and pear, respectively. In this study, the bacteriophage phiEaP-8 was isolated from apple orchard soil and could efficiently and specifically kill both E. amylovora and E. pyrifoliae. This bacteriophage belongs to the Podoviridae family. Whole genome analysis revealed that phiEaP-8 carries a 75,929 bp genomic DNA with 78 coding sequences and 5 tRNA genes. Genome comparison showed that phiEaP-8 has only 85% identity to known bacteriophages at the DNA level. PhiEaP-8 retained lytic activity up to $50^{\circ}C$, within a pH range from 5 to 10, and under 365 nm UV light. Based on these characteristics, the bacteriophage phiEaP-8 is novel and carries potential to control both E. amylovora and E. pyrifoliae in apple and pear.

Virulence Factors and Stability of Coliphages Specific to Escherichia coli O157:H7 and to Various E. coli Infection

  • Kim, Eun-Jin;Chang, Hyun-Joo;Kwak, Soojin;Park, Jong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권12호
    • /
    • pp.2060-2065
    • /
    • 2016
  • Characteristics of E. coli O157:H7-specific infection bacteriophages (O157 coliphages) and broad-host-range bacteriophages for other E. coli serotypes (broad-host coliphages) were compared. The burst sizes of the two groups ranged from 40 to 176 PFU/infected cell. Distributions of the virulence factors stx1, stx2, ehxA, and saa between the two groups were not differentiated. Broad-host-range coliphages showed lower stability at $70^{\circ}C$, in relation to O157 coliphages. However, O157 coliphages showed high acid and ethanol tolerance by reduction of only 22% and 11% phages, respectively, under pH 3 and 70% ethanol for 1 h exposure. Therefore, these results revealed that the O157 coliphages might be more stable under harsh environments, which might explain their effective infection of the acid-tolerant E. coli O157:H7.

Isolation and Characterization of a Bacteriophage Preying an Antifungal Bacterium

  • Rahimi-Midani, Aryan;Kim, Kyoung-Ho;Lee, Seon-Woo;Jung, Sang Bong;Choi, Tae-Jin
    • The Plant Pathology Journal
    • /
    • 제32권6호
    • /
    • pp.584-588
    • /
    • 2016
  • Several Bacillus species were isolated from rice field soils, and 16S rRNA gene sequence analysis showed that Bacillus cereus was the most abundant. A strain named BC1 showed antifungal activity against Rhizoctonia solani. Bacteriophages infecting strain BC1 were isolated from the same soil sample. The isolated phage PK16 had an icosahedral head of $100{\pm}5nm$ and tail of $200{\pm}5nm$, indicating that it belonged to the family Myoviridae. Analysis of the complete linear dsDNA genome revealed a 158,127-bp genome with G + C content of 39.9% comprising 235 open reading frames as well as 19 tRNA genes (including 1 pseudogene). Blastp analysis showed that the proteins encoded by the PK16 genome had the closest hits to proteins of seven different bacteriophages. A neighbor-joining phylogenetic tree based on the major capsid protein showed a robust clustering of phage PK16 with phage JBP901 and BCP8-2 isolated from Korean fermented food.

Efficacy of Bacteriophage Treatment in Murine Burn Wound Infection Induced by Klebsiella pneumoniae

  • Kumari, Seema;Harjai, Kusum;Chhibber, Sanjay
    • Journal of Microbiology and Biotechnology
    • /
    • 제19권6호
    • /
    • pp.622-628
    • /
    • 2009
  • In the present study, the therapeutic potential of purified and well-characterized bacteriophages was evaluated in thermally injured mice infected with Klebsiella pneumoniae B5055. The efficacy of five Klebsiella phages (Kpn5, Kpn12, Kpn13, Kpn17, and Kpn22) was evaluated on the basis of survival rate, decrease in bacterial counts in different organs of phage-treated animals, and regeneration of skin cells as observed by histopathological examination of phage-treated skin. Toxicity studies performed with all the phages showed them to be non-toxic, as no signs of morbidity and mortality were observed in phage-treated mice. The results of the study indicate that a single dose of phages, intraperitoneally (i.p.) at an MOI of 1.0, resulted in significant decrease in mortality, and this dose was found to be sufficient to completely cure K. pneumoniae infection in the burn wound model. Maximum decrease in bacterial counts in different organs was observed at 72 h post infection. Histopathological examination of skin of phage-treated mice showed complete recovery of burn infection. Kpn5 phage was found to be highly effective among all the phages and equally effective when compared with a cocktail of all the phages. From these results, it can be concluded that phage therapy may have the potential to be used as stand-alone therapy for K. pneumoniae induced burn wound infection, especially in situations where multiple antibiotic-resistant organisms are encountered.

새싹채소 유래 Enterococcus faecium으로부터 Temperate Phage의 분리와 특성 (Isolation and Characterization of Temperate Phages in Enterococcus faecium from Sprouts)

  • 이영덕;박종현
    • 한국식품과학회지
    • /
    • 제46권3호
    • /
    • pp.323-327
    • /
    • 2014
  • 새싹채소로부터 분리된 E. faecium의 temperate phage 특성을 mitomycin C를 이용하여 E. faecium으로부터 D-19 phage와 F6 phage를 각각 분리하였다. 분리된 temperate phage는 형태학적 특성을 확인한 결과 모두 Siphoviridae에 속하는 것으로 나타났다. 그리고, 숙주 저해 범위는 55개의 숙주중에서 D-19 phage는 5주, F6 phage는 3주의 E. faecium만을 용균시킬 수 있는 것으로 확인하였다. 다양한 ethanol 농도에서의 안정성은 고농도에서도 매우 안정한 것으로 확인되었으며, pH의 안정성도 pH 4까지 안정한 것으로 나타났다. 본 연구를 통해 아직 연구가 많이 이루어지지 않은 E. faecium의 temperate phage는 host spectrum이 넓지 않은 것으로 나타났고 pH, 온도 등의 환경인자에 상당히 강한 안정성을 가지고 있는 것으로 나타났다.

Optimization of the Bacteriophage Cocktail for the Prevention of Brown Blotch Disease Caused by Pseudomonas tolaasii

  • Yun, Yeong-Bae;Um, Yurry;Kim, Young-Kee
    • The Plant Pathology Journal
    • /
    • 제38권5호
    • /
    • pp.472-481
    • /
    • 2022
  • Brown blotch disease, caused by Pseudomonas tolaasii, is one of the most serious diseases in mushroom cultivation, and its control remains an important issue. This study isolated and evaluated pathogen-specific bacteriophages for the biological control of the disease. In previous studies, 23 varieties of P. tolaasii were isolated from infected mushrooms with disease symptoms and classified into three subtypes, Ptα, Ptβ, and Ptγ, based on their 16S rRNA gene sequences analysis and pathogenic characters. In this study, 42 virulent bacteriophages were isolated against these pathogens and tested for their host range. Some phages could lyse more than two pathogens only within the corresponding subtype, and no phage exhibited a wide host range across different pathogen subtypes. To eliminate all pathogens of the Ptα, Ptβ, and Ptγ subtype, corresponding phages of one, six, and one strains were required, respectively. These phages were able to suppress the disease completely, as confirmed by the field-scale on-farm cultivation experiments. These results suggested that a cocktail of these eight phages is sufficient to control the disease induced by all 23 P. tolaasii pathogens. Additionally, the antibacterial effect of this phage cocktail persisted in the second cycle of mushroom growth on the cultivation bed.