Browse > Article
http://dx.doi.org/10.5423/PPJ.NT.08.2017.0190

First Isolation and Molecular Characterization of Bacteriophages Infecting Acidovorax citrulli, the Causal Agent of Bacterial Fruit Blotch  

Rahimi-Midani, Aryan (Department of Microbiology, Pukyong National University)
Lee, Yong Seok (Department of Life Science and Biotechnology, Soonchunhyang University)
Kang, Se-Won (Biological Resources Center, Korea Research Institute of Bioscience and Biotechnology)
Kim, Mi-Kyeong (Department of Clinical Laboratory Science, Gimhae College)
Choi, Tae-Jin (Department of Microbiology, Pukyong National University)
Publication Information
The Plant Pathology Journal / v.34, no.1, 2018 , pp. 59-64 More about this Journal
Abstract
Bacteriophages of Acidovorax citrulli, the causal agent of bacterial fruit blotch, were isolated from 39 watermelon, pumpkin, and cucumber leaf samples collected from various regions of Korea and tested against 18 A. citrulli strains. Among the six phages isolated, ACP17 forms the largest plaque, and exhibits the morphology of phages in the Myoviridae family with a head diameter of $100{\pm}5nm$ and tail length of $150{\pm}5nm$. ACP17 has eclipse and latent periods of $25{\pm}5min$ and $50{\pm}5min$, respectively, and a burst size of 120. The genome of ACP17 is 156,281 base pairs with a G + C content of 58.7%, 263 open reading frames, and 4 transfer RNA genes. Blast search and phylogenetic analysis of the major capsid protein showed that ACP17 has limited homology to two Stentrophomonas phages, suggesting that ACP17 is a new type of Myoviridae isolated from A. citrulli.
Keywords
BFB; phage; watermelon;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Hopkins, D. L., Lovic, B., Hilgren, J. and Thompson, C. M. 2003. Wet seed treatment with peroxyacetic acid for the control of bacterial fruit blotch and other seedborne diseases of watermelon. Plant Dis. 87:1495-1499.   DOI
2 Isakeit, T., Black, M. C., Barnes, L. W. and Jones, J. B. 1997. First report of infection of honeydew with Acidovorax avenae subsp. citrulli. Plant Dis. 81:694-694.
3 Jonczyk, E., Klak, M., Miedzybrodzki, R. and Gorski, A. 2011. The influence of external factors on bacteriophages. Folia Microbiol. (Praha) 56:191-200.   DOI
4 Kubota, M., Hagiwara, N. and Shirakawa, T. 2012. Disinfection of seeds of cucurbit crops infested with Acidovorax citrulli with dry heat treatment. J. Phytopathol. 160:364-368.   DOI
5 Latin, R. X. and Rane, K. K. 1990. Bacterial fruit blotch of watermelon in Indiana. Plant Dis. 74:331-335.
6 Lessl, J. T., Fessehaie, A. and Walcott, R. R. 2007. Colonization of female watermelon blossoms by Acidovorax avenae ssp. citrulli and the relationship between blossom inoculum dosage and seed infestation. J. Phytopathol. 155:114-121.   DOI
7 Lim, J. A., Jee, S., Lee, D. H., Roh, E., Jung, K., Oh, C. and Heu, S. 2013. Biocontrol of Pectobacterium carotovorum subsp. carotovorum using bacteriophage PP1. J. Microbiol. Biotechnol. 23:1147-1153.   DOI
8 Peng, Y., Leung, H. C., Yiu, S. M. and Chin, F. Y. 2012. IDBAUD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics, 28:1420-1428.   DOI
9 Ondov, B. D., Bergman, N. H. and Phillippy, A. M. 2011. Interactive metagenomic visualization in a Web browser. BMC Bioinformatics, 12:385.   DOI
10 Rane, K. K. and Latin, R. X. 1992. Bacterial fruit blotch of watermelon: association of the pathogen with seed. Plant Dis. 76:509-512.   DOI
11 Schaad, N. W., Postnikova, E., Sechler, A., Claflin, L. E., Vidaver, A. K., Jones, J. B., Agarkova, I., Ignatov, A., Dickstein, E. and Ramundo, B. A. 2008. Reclassification of subspecies of Acidovorax avenae as A. Avenae (Manns 1905) emend., A. cattleyae (Pavarino, 1911) comb. nov., A. citrulli Schaad et al., 1978) comb. nov., and proposal of A. oryzae sp. nov. Syst. Appl. Microbiol. 31:434-446.   DOI
12 Sharma, S., Chatterjee, S., Datta, S., Prasad, R., Dubey, D., Prasad, R. K. and Vairale, M. G. 2017. Bacteriophages and its applications: an overview. Folia. Microbiol. 62:17-55.   DOI
13 Song, W. Y., Kim, H. M., Son, I. Y. and Kang, Y. K. 1991. Pseudomonas pseudoalcaligenes subsp. citrulli: The causal agent of bacterial fruit blotch rot on watermelon. Korean J. Plant Pathol. 7:177-18.
14 Tao, C., Guo-Liang, Q., Xiao-Li, Y., Jun-Yi, M., Bai-Shi, H. and Feng-Quan, L. 2009. Detection of a quorum sensing signal molecule of Acidovorax avenae subsp. citrulli and its regulation of pathogenicity. Chin. J. Agric. Biotechnol. 6:49-53.   DOI
15 Torsvik, V. and Ovreas, L. 2002. Microbial diversity and function in soil: from genes to ecosystems. Curr. Opin. Microbiol. 5:240-245.   DOI
16 Turner, D., Wand, M. E., Sutton, J. M., Centron, D., Kropinski, A. M. and Reynolds, D. M. 2016. A viable prophage isolated from Acinetobacter baumannii strain A118. Genome announc. 4:e01051-16.
17 Abedon, S. T. and Culler, R. R. 2007. Optimizing bacteriophage plaque fecundity. J. Theor. Biol. 249:582-592.   DOI
18 Walmagh, M., Boczkowska, B., Grymonprez, B., Briers, Y., Drulis-Kawa, Z. and Lavigne, R. 2013. Characterization of five novel endolysins from Gram-negative infecting bacteriophages. Appl. Microbiol. Biotechnol. 97:4369-4375.   DOI
19 Willems, A., Goor, M., Thielemans, S., Gillis, M., Kersters, K. and De Ley, J. 1992. Transfer of several phytopathogenic Pseudomonas species to Acidovorax as Acidovorax avenae subsp. avenae subsp. nov., comb. nov., Acidovorax avenae subsp. citrulli, Acidovorax avenae subsp. cattleyae, and Acidovorax konjaci. Int. J. Syst. Evol. Microbiol. 42:107-119.
20 Zivanovic, M. and Walcott, R. R. 2016. Further characterization of genetically distinct groups of Acidovorax citrulli strains. Phytopathology 107:29-35.
21 Bonilla, N., Rojas, M. I., Cruz, G. N. F., Hung, S. H., Rohwer, F. and Barr, J. J. 2016. Phage on tap-a quick and efficient protocol for the preparation of bacteriophage laboratory stocks. PeerJ 4:e2261.   DOI
22 Ashelford, K. E., Day, M. J. and Fry, J. C. 2003. Elevated abundance of bacteriophage infecting bacteria in soil. Appl. Environ. Microbiol. 69:285-289.   DOI
23 Besemer, J. and Borodovsky, M. 1999. Heuristic approach to deriving models for gene finding. Nucleic Acids Res. 27:3911-3920.   DOI
24 Bhunchoth, A., Phironrit, N., Leksomboon, C., Chatchawankanphanich, O., Kotera, S., Narulita, E., Kawasaki, T., Fujie, M. and Yamada, T. 2015. Isolation of Ralstonia solanacearuminfecting bacteriophages from tomato fields in Chiang Mai, Thailand, and their experimental use as biocontrol agents. J. Appl. Microbiol. 118:1023-1033.   DOI
25 Borah, P. K., Jindal, J. K. and Verma, J. P. 2000. Integrated management of bacterial leaf spot of mungbean with bacteriophages of Xav and chemicals. J. Mycol. Plant Pathol. 30:19-21.
26 Buttimer, C., McAuliffe, O., Ross, R. P., Hill, C., O'Mahony, J. and Coffey, A. 2017. Bacteriophages and bacterial plant diseases. Front. Microbiol. 8:34.
27 Frampton, R. A., Pitman, A. R. and Fineran, P. C. 2012. Advances in bacteriophage-mediated control of plant pathogens. Int. J. Microbiol. 2012:326452.
28 Gill, J. J. and Hyman, P. 2010. Phage choice, isolation, and preparation for phage therapy. Curr. Pharm. Biotechnol. 11:2-14.   DOI
29 Hopkins, D. L. 1991. Chemical control of bacterial fruit blotch of watermelon. Proc. Fla. State Hortic. Soc. 104:270-272.
30 Hopkins, D. L., Cucuzza, J. D. and Watterson, J. C. 1996. Wet seed treatments for the control of bacterial fruit blotch of watermelon. Plant Dis. 80:529-532.   DOI