DOI QR코드

DOI QR Code

Optimization of the Bacteriophage Cocktail for the Prevention of Brown Blotch Disease Caused by Pseudomonas tolaasii

  • Yun, Yeong-Bae (Department of Environmental and Biological Chemistry, Chungbuk National University) ;
  • Um, Yurry (Forest Medicinal Resources Research Center, National Institute of Forest Science) ;
  • Kim, Young-Kee (Department of Environmental and Biological Chemistry, Chungbuk National University)
  • Received : 2022.03.02
  • Accepted : 2022.08.08
  • Published : 2022.10.01

Abstract

Brown blotch disease, caused by Pseudomonas tolaasii, is one of the most serious diseases in mushroom cultivation, and its control remains an important issue. This study isolated and evaluated pathogen-specific bacteriophages for the biological control of the disease. In previous studies, 23 varieties of P. tolaasii were isolated from infected mushrooms with disease symptoms and classified into three subtypes, Ptα, Ptβ, and Ptγ, based on their 16S rRNA gene sequences analysis and pathogenic characters. In this study, 42 virulent bacteriophages were isolated against these pathogens and tested for their host range. Some phages could lyse more than two pathogens only within the corresponding subtype, and no phage exhibited a wide host range across different pathogen subtypes. To eliminate all pathogens of the Ptα, Ptβ, and Ptγ subtype, corresponding phages of one, six, and one strains were required, respectively. These phages were able to suppress the disease completely, as confirmed by the field-scale on-farm cultivation experiments. These results suggested that a cocktail of these eight phages is sufficient to control the disease induced by all 23 P. tolaasii pathogens. Additionally, the antibacterial effect of this phage cocktail persisted in the second cycle of mushroom growth on the cultivation bed.

Keywords

Acknowledgement

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education (2017R1D1A3B03032718).

References

  1. Abdelrhim, A. S., Ahmad, A. A., Omar, M. O. A., Hammad, A. M. M. and Huang, Q. 2021. A new Streptomyces scabies-infecting bacteriophage from Egypt with promising biocontrol traits. Arch. Microbiol. 203:4233-4242. https://doi.org/10.1007/s00203-021-02415-2
  2. Abedon, S. T. 2016. Commentary: phage therapy of Staphylococcal chronic osteomyelitis in experimental animal model. Front. Microbiol. 7:1251.
  3. Chibani-Chennoufi, S., Sidoti, J., Bruttin, A., Kutter, E., Sarker, S. and Brussow, H. 2004. In vitro and in vivo bacteriolytic activities of Escherichia coli phages: implications for phage therapy. Antimicrob. Agents Chemother. 48:2558-2569. https://doi.org/10.1128/AAC.48.7.2558-2569.2004
  4. Cubero, S., Aleixos, N., Molto, E., Gomez-Sanchis, J. and Blasco, J. 2011. Advances in machine vision applications for automatic inspection and quality evaluation of fruits and vegetables. Food Bioproc. Technol. 4:487-504. https://doi.org/10.1007/s11947-010-0411-8
  5. Dong, Z., Xing, S., Liu, J., Tang, X., Ruan, L., Sun, M., Tong, Y. and Peng, D. 2018. Isolation and characterization of a novel phage Xoo-sp2 that infects Xanthomonas oryzae pv. oryzae. J. Gen. Virol. 99:1453-1462. https://doi.org/10.1099/jgv.0.001133
  6. Fernandez, L., Gutierrez, D., Rodriguez, A. and Garcia, P. 2018. Application of bacteriophages in the agro-food sector: a long way toward approval. Front. Cell Infect. Microbiol. 8:296.
  7. Food and Drug Administration. 2006. Food additives permitted for direct addition to food for human consumption; bacteriophage preparation. Fed. Regist. 71:47729-47732.
  8. Geels, F. P. 1995. Pseudomonas tolaasii control by kasugamycin in cultivated mushrooms (Agaricus bisporus) J. Appl. Bacteriol. 79:38-42. https://doi.org/10.1111/j.1365-2672.1995.tb03121.x
  9. Geels, F. P., van Griensven, L. J. L. D. and Rutjens, A. J. 1991. Chlorine dioxide and the control of bacterial blotch on mushrooms, caused by Pseudomonas tolaasii. In: Science and cultivation of edible fungi, ed. by M. J. Maher, pp. 437-442. Balkema, Rotterdam, Netherlands.
  10. Godfrey, S. A., Harrow, S. A., Marshall, J. W. and Klena, J. D. 2001. Characterization by 16S rRNA sequence analysis of pseudomonads causing blotch disease of cultivated Agaricus bisporus. Appl. Environ. Microbiol. 67:4316-4323. https://doi.org/10.1128/AEM.67.9.4316-4323.2001
  11. Gundogdu, A., Bolkvadze, D. and Kilic, H. 2016. In vitro effectiveness of commercial bacteriophage cocktails on diverse extended-spectrum beta-lactamase producing Escherichia coli strains. Front. Microbiol. 7:1761.
  12. Hibbing, M. E., Fuqua, C., Parsek, M. R. and Peterson, S. B. 2010. Bacterial competition: surviving and thriving in the microbial jungle. Nat. Rev. Microbiol. 8:15-25. https://doi.org/10.1038/nrmicro2259
  13. Hyman, P. and Abedon, S. T. 2010. Bacteriophage host range and bacterial resistance. Adv. Appl. Microbiol. 70:217-248. https://doi.org/10.1016/S0065-2164(10)70007-1
  14. Iacobellis, N. S. and Lo Cantore, P. 1998. Recenti acquisizioni sul determinismo della batteriosi del cardoncello (Pleurotus eryngii). Agricoltura Ricerca 176:51-54 (in Italian).
  15. Khalifa, L., Shlezinger, M., Beyth, S., Houri-Haddad, Y., Coppenhagen-Glazer, S., Beyth, N. and Hazan, R. 2016. Phage therapy against Enterococcus faecalis in dental root canals. J. Oral Microbiol. 8:32157.
  16. Lee, C.-J., Yoo, Y.-M., Han, J.-Y., Jhune, C.-S., Cheong, J.-C., Moon, J.-W., Suh, J.-S., Han, H.-S. and Cha, J.-S. 2014. Pseudomonas azotoformans HC5 effective in antagonistic of mushrooms brown blotch disease caused by Pseudomonas tolaasii. Korean J. Mycol. 42:219-224 (in Korean). https://doi.org/10.4489/KJM.2014.42.3.219
  17. Lee, H. I., Lee, S. D., Park, K. S., Kim, Y. K. and Cha, J. S. 1997. Pathogenicity of bacterial isolates from brown blotchdiseased oyster mushrooms in Chungcheongbuk-do. J. Agric. Sci. Chungbuk Nat. Univ. 14:121-132 (in Korean).
  18. Lee, H.-J., Yun, Y.-B., Huh, J.-H. and Kim, Y.-K. 2017. Suppression of green mold disease on oak mushroom cultivation by antifungal peptides. J. Appl. Biol. Chem. 60:149-153 (in Korean). https://doi.org/10.3839/jabc.2017.025
  19. Ministry of Agriculture, Food and Rural Affairs. 2021. Special crop production statistics 2019. URL https://lib.mafra.go.kr/skyblueimage/5729.pdf [20 August 2022].
  20. Munsch, P., Oliver, J. M. and Houdeau, G. 1991. Experimental control of bacterial blotch by bacteriophages. In: Science and cultivation of edible fungi, ed. by M. J. Maher, pp. 389-396. Balkema, Rotterdam, Netherlands.
  21. Oechslin, F., Piccardi, P., Mancini, S., Gabard, J., Moreillon, P., Entenza, J. M., Resch, G. and Que, Y. A. 2017. Synergistic interaction between phage therapy and antibiotics clears Pseudomonas aeruginosa infection in endocarditis and reduces virulence. J. Infect. Dis. 215:703-712.
  22. Park, J., Lee, G. M., Kim, D., Park, D. H. and Oh, C.-S. 2018. Characterization of the lytic bacteriophage phiEaP-8 effective against both Erwinia amylovora and Erwinia pyrifoliae causing severe diseases in apple and pear. Plant Pathol. J. 34:445-450. https://doi.org/10.5423/PPJ.NT.06.2018.0100
  23. Pedreschi, R., Hertog, M., Lilley, K. S. and Nicolai, B. 2010. Proteomics for the food industry: opportunities and challenges. Crit. Rev. Food Sci. Nutr. 50:680-692. https://doi.org/10.1080/10408390903044214
  24. Pereira, C., Moreirinha, C., Teles, L., Rocha, R., Calado, R., Romalde, J. L., Nunes, M. L. and Almeida, A. 2017. Application of phage therapy during bivalve depuration improves Escherichia coli decontamination. Food Microbiol. 61:102-112. https://doi.org/10.1016/j.fm.2016.09.003
  25. Ranjan, R., Rani, A., Metwally, A., McGee, H. S. and Perkins, D. L. 2016. Analysis of the microbiome: advantages of whole genome shotgun versus 16S amplicon sequencing. Biochem. Biophys. Res. Commun. 469:967-977. https://doi.org/10.1016/j.bbrc.2015.12.083
  26. Smith, P. and Schuster, M. 2019. Public goods and cheating in microbes. Curr. Biol. 29: R442-R447. https://doi.org/10.1016/j.cub.2019.03.001
  27. Tolaas, A. G. 1915. A bacterial disease of cultivated mushrooms. Phytopathology 5:51-54.
  28. Wang, X., Wei, Z., Yang, K., Wang, J., Jousset, A., Xu, Y., Shen, Q. and Friman, V.-P. 2019. Phage combination therapies for bacterial wilt disease in tomato. Nat. Biotechnol. 37:1513-1520. https://doi.org/10.1038/s41587-019-0328-3
  29. Yen, M., Cairns, L. S. and Camilli, A. 2017. A cocktail of three virulent bacteriophages prevents Vibrio cholerae infection in animal models. Nat. Commun. 8:14187.
  30. Yun, Y.-B., Han, J.-H. and Kim, Y.-K. 2018a. Characterization of phage-resistant strains derived from Pseudomonas tolaasii 6264, which causes brown blotch disease. J. Microbiol. Biotechnol. 28:2064-2070. https://doi.org/10.4014/jmb.1809.09023
  31. Yun, Y.-B. and Kim, Y.-K. 2020. Molecular analysis of peptide toxins secreted by various Pseudomonas tolaasii strains. J. Appl. Biol. Chem. 63:387-392 (in Korean). https://doi.org/10.3839/jabc.2020.050
  32. Yun, Y.-B., Lee, H.-J. and Kim, Y.-K. 2018b. Increase in antifungal activity by the combination of tolaasin and its analogue peptides. J. Appl. Biol. Chem. 61:69-73. https://doi.org/10.3839/jabc.2018.010
  33. Yun, Y.-B., Park, S.-W., Cha, J.-S. and Kim, Y.-K. 2013. Biological characterization of various strains of Pseudomonas tolaasii that causes brown blotch disease. J. Korean Soc. Appl. Biol. Chem. 56:41-45. https://doi.org/10.1007/s13765-012-2242-y