Browse > Article
http://dx.doi.org/10.4014/jmb.2005.05040

Recent Insights into Aeromonas salmonicida and Its Bacteriophages in Aquaculture: A Comprehensive Review  

Park, Seon Young (Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology)
Han, Jee Eun (Laboratory of Aquatic Biomedicine, College of Veterinary Medicine, Kyungpook National University)
Kwon, Hyemin (Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology)
Park, Se Chang (Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University)
Kim, Ji Hyung (Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology)
Publication Information
Journal of Microbiology and Biotechnology / v.30, no.10, 2020 , pp. 1443-1457 More about this Journal
Abstract
The emergence and spread of antimicrobial resistance in pathogenic bacteria of fish and shellfish have caused serious concerns in the aquaculture industry, owing to the potential health risks to humans and animals. Among these bacteria, Aeromonas salmonicida, which is one of the most important primary pathogens in salmonids, is responsible for significant economic losses in the global aquaculture industry, especially in salmonid farming because of its severe infectivity and acquisition of antimicrobial resistance. Therefore, interest in the use of alternative approaches to prevent and control A. salmonicida infections has increased in recent years, and several applications of bacteriophages (phages) have provided promising results. For several decades, A. salmonicida and phages infecting this fish pathogen have been thoroughly investigated in various research areas including aquaculture. The general overview of phage usage to control bacterial diseases in aquaculture, including the general advantages of this strategy, has been clearly described in previous reviews. Therefore, this review specifically focuses on providing insights into the phages infecting A. salmonicida, from basic research to biotechnological application in aquaculture, as well as recent advances in the study of A. salmonicida.
Keywords
Aeromonas salmonicida; antimicrobial resistance; salmonid culture; bacteriophage;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Vincent AT, Fernandez-Bravo A, Sanchis M, Mayayo, E, Figueras, MJ, Charette SJ. 2019. Investigation of the virulence and genomics of Aeromonas salmonicida strains isolated from human patients. Infect. Genet. Evol. 68: 1-9.   DOI
2 Inglis V, Robertson D, Miller K, Thompson KD, Richards RH. 1996. Antibiotic protection against recrudescence of latent Aeromonas salmonicida during furunculosis vaccination. J. Fish Dis. 19: 341-348.   DOI
3 Sommerset I., Krossoy B, Biering E, Frost P. 2005. Vaccines for fish in aquaculture. Exp. Rev. Vaccines 4: 89-101.   DOI
4 Gudding R,Van Muiswinkel WB. 2013. A history of fish vaccination: science-based disease prevention in aquaculture. Fish Shellfish Immun. 35: 1683-1688.   DOI
5 Menanteau-Ledouble S, Krauss I, Santos G, Fibi S, Weber B, El-Matbouli M. 2015. Effect of a phytogenic feed additive on the susceptibility of Onchorhynchus mykiss to Aeromonas salmonicida. Dis. Aquat. Organ. 115: 57-66.   DOI
6 Barnes AC, Horne MT, Ellis AE. 1996. Effect of iron on expression of superoxide dismutase by Aeromonas salmonicida and associated resistance to superoxide anion. FEMS Microbiol. Lett. 142 :19-26.   DOI
7 Vincent AT, Trudel MV, Freschi L, Nagar V, Gagne-Thivierge, C, Levesque, RC, et al. 2016. Increasing genomic diversity and evidence of constrained lifestyle evolution due to insertion sequences in Aeromonas salmonicida. BMC Genomics 17: 44.   DOI
8 Pfeiffer F, Zamora-Lagos MA, Blettinger M, Yeroslaviz A, Dahl A, Gruber S, et al. 2018. The complete and fully assembled genome sequence of Aeromonas salmonicida subsp. pectinolytica and its comparative analysis with other Aeromonas species: investigation of the mobilome in environmental and pathogenic strains. BMC Genomics 19: 20.   DOI
9 Beaz-Hidalgo R, Hossain MJ, Liles MR, Figueras MJ. 2015. Strategies to avoid wrongly labelled genomes using as example the detected wrong taxonomic affiliation for Aeromonas genomes in the GenBank database. PLoS One 10: e0115813.   DOI
10 Han HJ, Kim DY, Kim WS, Kim CS, Jung SJ, Oh MJ, et al. 2011. Atypical Aeromonas salmonicida infection in the black rockfish, Sebastes schlegeli Hilgendorf, in Korea. J. Fish Dis. 34: 47-55.   DOI
11 Kim A, Nguyen, TL, Kim, DH. 2018. Complete genome sequence of the virulent Aeromonas salmonicida subsp. masoucida strain RFAS1. Genome Announc. 6: e00470-18.
12 Beilstein F, Dreiseikelmann B. 2008. Temperate bacteriophage PhiO18P from an Aeromonas media isolate: characterization and complete genome sequence. Virology 373: 25-29.   DOI
13 Sahu MK, Swarnakumar NS, Sivakumar K, Thangaradjou T, Kannan L. 2008. Probiotics in aquaculture: importance and future perspectives. Indian. J. Microbiol. 48: 299-308.   DOI
14 Robertson PAW, O'Dowd C, Burrells C, Williams P, Austin B. 2000. Use of Carnobacterium sp. as a probiotic for Atlantic salmon (Salmo salar L.) and rainbow trout (Oncorhynchus mykiss, Walbaum). Aquaculture 185: 235-243.   DOI
15 Balcazar JL, Vendrell D, de Blas I, Ruiz-Zarzuela I, Muzquiz JL. 2009. Effect of Lactococcus lactis CLFP 100 and Leuconostoc mesenteroides CLFP 196 on Aeromonas salmonicida infection in brown trout (Salmo trutta). J. Mol. Microbiol. Biotechnol. 17: 153-157.   DOI
16 Sica MG, Brugnoni LI, Marucci PL, Cubitto MA. 2012. Characterization of probiotic properties of lactic acid bacteria isolated from an estuarine environment for application in rainbow trout (Oncorhynchus mykiss, Walbaum) farming. Antonie Van Leeuwenhoek 101: 869-879.   DOI
17 Anderson DP, Siwicki AK. 1994. Duration of protection against Aeromonas salmonicida in brook trout immuno-stimulated with glucan or chitosan by injection or immersion. Prog. Fish-Cult. 56: 258-261.   DOI
18 Thomas J, Jerobin J, Seelan TSJ, Thanigaivel S, Vijaya-kumar S, Mukherjee A, Chandrasekaran N. 2013. Studies on pathogenecity of Aeromonas salmonicida in catfish Clarias batrachus and control measures by neem nanoemulsion. Aquaculture 396-399: 71-75.   DOI
19 Dacanay A, Johnson SC, Bjornsdottir R, Ebanks RO, Ross NW, Reith M, et al. 2003. Molecular characterization and quantitative analysis of superoxide dismutases in virulent and avirulent strains of Aeromonas salmonicida subsp. salmonicida. J. Bacteriol. 185: 4336-4344.   DOI
20 Cipriano RC, Bullock GL. 2001. Furunculosis and other diseases caused by Aeromonas salmonicida. US Fish and Wildlife Service, USGS, Kearneysville. Fish Disease Leaflet 66.
21 Kim JH, Hwang SY, Son JS, Han JE, Jun JW, Shin SP, et al. 2011. Molecular characterization of tetracycline-and quinolone-resistant Aeromonas salmonicida isolated in Korea. J. Vet. Sci. 12: 41-48.   DOI
22 Comeau AM, Tremblay D, Moineau S, Rattei T, Kushkina AI, Tovkach FI, et al. 2012. Phage morphology recapitulates phylogeny: the comparative genomics of a new group of myoviruses. PLoS One 7: e40102.   DOI
23 Kim JH, Son JS, Choi YJ, Choresca CH, Shin SP, Han JE, et al. 2012. Complete genomic sequence of a T4-like bacteriophage, phiAS4, infecting Aeromonas salmonicida subsp. salmonicida. Arch. Virol. 157: 391-395.   DOI
24 Kim JH, Son JS, Choi YJ, Choresca CH, Shin SP, Han JE, et al. 2012. Complete genome sequence and characterization of a broadhost range T4-like bacteriophage phiAS5 infecting Aeromonas salmonicida subsp. salmonicida. Vet. Microbiol. 157: 164-171.   DOI
25 Kim JH, Son JS, Choresca CH, Shin SP, Han JE, Jun JW, et al. 2012. Complete genome sequence of bacteriophage phiAS7, a T7-like virus that infects Aeromonas salmonicida subsp. salmonicida. J. Virol. 2894-2895.
26 Kim JH, Son JS, Choi YJ, Choresca CH, Shin SP, Han JE. et al. 2012. Isolation and characterization of a lytic Myoviridae bacteriophage PAS-1 with broad infectivity in Aeromonas salmonicida. Curr. Microbiol. 64: 418-426.   DOI
27 Turker H, Yildirim AB. 2015. Screening for antibacterial activity of some Turkish plants against fish pathogens: a possible alternative in the treatment of bacterial infections. Biotechnol. Biotechnol. Equip. 29: 281-288.   DOI
28 Emond-Rheault JG, Vincent AT, Trudel MV, Brochu F, Boyle B, et al. 2015. Variants of a genomic island in Aeromonas salmonicida subsp. salmonicida link isolates with their geographical origins. Vet. Microbiol. 175: 68-76.   DOI
29 Vincent AT, Paquet VE, Bernatchez A, Tremblay DM, Moineau S, Charette SJ. 2017. Characterization and diversity of phages infecting Aeromonas salmonicida subsp. salmonicida. Sci. Rep. 7: 1-10.   DOI
30 Labrie SJ, Samson JE, Moineau S. 2010. Bacteriophage resistance mechanisms. Nat. Rev. Microbiol. 8: 317-327.   DOI
31 Starliper CE, Ketola HG, Noyes AD, Schill WB, Henson FG, Chalupnicki MA, et al. 2015. An investigation of the bactericidal activity of selected essential oils to Aeromonas spp. J. Adv. Res. 6: 89-97.   DOI
32 Watanabe R, Matsumoto T, Sano G, Ishii Y, Tateda K, Sumiyama Y, et al. 2007. Efficacy of bacteriophage therapy against gut-derived sepsis caused by Pseudomonas aeruginosa in mice. Antimicrob. Agents Chemother. 51: 446-452.   DOI
33 Barrow P, Lovell M, Berchieri A. 1998. Use of lytic bacteriophage for control of experimental Escherichia coli septicemia and meningitis in chickens and calves. Clin. Diagn. Lab. Immunol. 5: 294-298.   DOI
34 Soothill JS. 1992. Treatment of experimental infections of mice with bacteriophages. J. Med. Microbiol. 37: 258-261.   DOI
35 Hagens S, Habel A, Ahsen U, Gabain A, Blasi U. 2004. Therapy of experimental Pseudomonas infections with a nonreplicating genetically modified phage. Antimicrob. Agents Chemother. 48: 3817-3822.   DOI
36 Moreirinha C, Osorio N, Pereira C, Simoes S, Delgadillo I, Almeida A. 2018. Protein expression modifications in phage-resistant mutants of Aeromonas salmonicida after AS-A phage treatment. Antibiotics 7: 21.   DOI
37 Vincent AT, Paquet VE, Bernatchez A, Tremblay DM, Moineau S, Charette SJ. 2017. Characterization and diversity of phages infecting Aeromonas salmonicida subsp. salmonicida. Sci. Rep. 7: 1-10.   DOI
38 Chen L, Yuan S, Liu Q, Mai G, Yang J, Deng D, et al. 2018. In vitro design and evaluation of phage cocktails against Aeromonas salmonicida. Front. Microbiol. 9: 1476.   DOI
39 Yang Z, Yuan S, Chen L, Liu Q, Zhang H, Ma Y, et al. 2018. Complete genome analysis of bacteriophage AsXd-1, a new member of the genus Hk97virus, family Siphoviridae. Arch. Virol. 163: 3195-3197.   DOI
40 Wills QF, Kerrigan C, Soothill JS. 2005. Experimental bacteriophage protection against Staphylococcus aureus abscesses in a rabbit model. Antimicrob. Agents Chemother. 49: 1220-1221.   DOI
41 Biswas B, Adhya S, Washart P, Paul B, Trostel AN, Powell B, et al. 2002. Bacteriophage therapy rescues mice bacteremic from a clinical isolate of vancomycin-resistant Enterococcus faecium. Infect. Immun. 70: 204-210.   DOI
42 Jado I, Lopez R, Garcia E, Fenoll A, Casal J, Garcia P. 2003. Phage lytic enzymes as therapy for antibiotic-resistant Streptococcus pneumoniae infection in a murine sepsis model. J. Antimicrob. Chemother. 52: 967-973.   DOI
43 Cao J, Sun Y, Berglindh T, Mellgard B, Li Z, Mardh B, et al. 2000. Helicobacter pylori-antigen-binding fragments expressed on the filamentous M13 phage prevent bacterial growth. Biochim. Biophys. Acta 1474: 107-113.   DOI
44 Fiorentin L, Vieira N, Barioni W. 2005. Use of lytic bacteriophages to reduce Salmonella enteritidis in experimentally contaminated chicken cuts. Rev. Bras. Cienc. Avic. 7: 255-260.   DOI
45 Nakai T, Park SC. 2002. Bacteriophage therapy of infectious diseases in aquaculture. Res. Microbiol. 153: 13-18.   DOI
46 Hayatgheib N, Moreau E, Calvez S, Lepelletier D, Pouliquen, H. 2020. A review of functional feeds and the control of Aeromonas infections in freshwater fish. Aquacult. Int. 28: 1083-1123.   DOI
47 Adhya S, Merril C. 2006. The road to phage therapy. Nature 443: 754-755.   DOI
48 Moye ZD, Woolston J, Sulakvelidze A. 2018. Bacteriophage applications for food production and processing. Viruses 10: 205.   DOI
49 Hirvela-Koski V. 2005. Fish pathogens Aeromonas salmonicida and Renibacterium salmoninarum: diagnostic and epidemiological aspects. Academic Dissertation, University of Helsinki.
50 Ljungberg O, Johansson N. 1977. Epizootiological studies on atypical Aeromonas salmonicida infections of Salmonids in Swedish fish farms, 1967-1977. Bull. Off. Int. Epiz. 87: 475-478.
51 Paterson, WD, Douey, D, Desautels D. 1980. Relationships between selected strains of typical and atypical Aeromonas salmonicida, Aeromonas hydrophila, and Haemophilus piscium. Can. J. Microbiol. 26: 588-598.   DOI
52 Herman RL. 1968. Fish furunculosis. Trans. Am. Fish. Soc. 97: 221-230.   DOI
53 Wood JW. 1967. Salmon disease report. Wash. Dept. Fish. Ann. Rep. 77: 111-112.
54 Kim JH, Choresca CH, Shin SP, Han JE, Jun JW, Park SC. 2015. Biological control of Aeromonas salmonicida subsp. salmonicida infection in rainbow trout (Oncorhynchus mykiss) using Aeromonas phage PAS‐1. Transbound Emerg. Dis. 62: 81-86.   DOI
55 Gon Choudhury T, Tharabenahalli Nagaraju V, Gita S, Paria A, Parhi J. 2017. Advances in bacteriophage research for bacterial disease control in aquaculture. Rev. Fish. Sci. Aquac. 25: 113-125.   DOI
56 Culot A, Grosset N, Gautier M. 2019. Overcoming the challenges of phage therapy for industrial aquaculture: a review. Aquaculture 513: 734423.   DOI
57 Imbeault S, Parent S, Lagace M, Uhland CF, Blais JF. 2006. Using bacteriophages to prevent furunculosis caused by Aeromonas salmonicida in farmed brook trout. J. Aquat. Anim. Health 18: 203-214.   DOI
58 Silva YJ, Moreirinha C, Pereira C, Costa L, Rocha R J, Cunha A, et al. 2016. Biological control of Aeromonas salmonicida infection in juvenile Senegalese sole (Solea senegalensis) with phage AS-A. Aquaculture 450: 225-233.   DOI
59 Nakai, T. 2010. Application of bacteriophages for control of infectious diseases in aquaculture. In Bacteriophages in the control of food-and waterborne pathogens pp. 257-272. American Society of Microbiology.
60 Zhou Y. Yuan S. Yan T. Ma Y. 2019. Isolation and characterization of a novel lytic T4-like bacteriophage Asfd-1 infecting Aeromonas salmonicida. J. Integr. Technol. 8: 1-9.
61 Kavagutti VS, Andrei AS, Mehrshad M, Salcher MM, Ghai R. 2019. Phage-centric ecological interactions in aquatic ecosystems revealed through ultra-deep metagenomics. Microbiome 7: 1-15.   DOI
62 DePaola A, Flynn PA, McPhearson RM, Levy SB. 1988. Phenotypic and genotypic characterization of tetracycline- and oxytetracycline-resistant Aeromonas hydrophila from cultured channel catfish (Ictalurus punctatus) and their environments. Appl. Environ. Microbiol. 54: 1861-1863.   DOI
63 Inglis V, Yimer E, Bacon EJ, Ferguson S. 1993. Plasmid-mediated antibiotic resistance in Aeromonas salmonicida isolated from Atlantic salmon, Salmo salar L., in Scotland. J. Fish Dis. 16: 593-599.   DOI
64 McIntosh D, Cunningham M, Ji B, Fekete FA, Parry EM, Clark SE, et al. 2008. Transferable, multiple antibiotic and mercury resistance in Atlantic Canadian isolates of Aeromonas salmonicida subsp. salmonicida is associated with carriage of an IncA/C plasmid similar to the Salmonella enterica plasmid pSN254. J. Antimicrob. Chemother. 61: 1221-1228.   DOI
65 Kim YS, Yoon JW, Han HJ, Suebsing R, Kim JH. 2011. Prevalence and characterization of typical Aeromonas salmonicida chum salmon isolates in Korea. Fish Aquat. Sci. 14: 347-354.   DOI
66 Adams MJ, Lefkowitz EJ, King, AM, et al. 2017. 50 Years of the international committee on taxonomy of viruses: progress and prospects. Arch. Virol. 162: 1441-1446.   DOI
67 Calendar R. 2005. The Bacteriophages 2nd Ed. Oxford Univ. Press, New York.
68 d'Herelle F. 1918. Technique de la recherche du microbe filtrant bacteriophage (Bacteriophagum intestinale). C. R. Soc. Biol. 81: 1160-1162.
69 Bradley DE. 1967. Ultrastructure of bacteriophage and bacteriocins. Bacteriol. Rev. 31: 230-314.   DOI
70 Chibani CM, Farr A, Klama S, Dietrich S, Liesegang H. 2019. Classifying the unclassified: a phage classification method. Viruses 11: 195.   DOI
71 Wheeler DL. 2000. Database resources of the national center for biotechnology information. Nucleic Acids Res. 28: 10-14.   DOI
72 Ackermann HW. 2009. Phage classification and characterization, pp.127-140. In Bacteriophages, Humana press.
73 Dion MB, Oechslin F, Moineau S. 2020. Phage diversity, genomics and phylogeny. Nat. Rev. Microbiol. 18: 125-138.   DOI
74 Krupovic M, Dutilh BE, Adriaenssens EM, et al. 2016. Taxonomy of prokaryotic viruses: update from the ICTV bacterial and archaeal viruses subcommittee. Arch. Virol. 161: 1095-1099.   DOI
75 Lefkowitz EJ, Dempsey DM, Hendrickson RC, Orton RJ, Siddell SG, Smith DB. 2018. Virus taxonomy: the database of the International Committee on Taxonomy of Viruses (ICTV). Nucleic Acids Res. 46(D1): D708-D717.   DOI
76 Paquet VE, Vincent AT, Moineau S, Charette SJ. 2019. Beyond the A‐layer: adsorption of lipopolysaccharides and characterization of bacteriophage‐insensitive mutants of Aeromonas salmonicida subsp. salmonicida. Mol. Microbiol. 112: 667-677.   DOI
77 Toro H, Price SB, McKee S, Hoerr FJ, Krehling J, Perdue M, et al. 2005. Use of bacteriophages in combination with competitive exclusion to reduce Salmonella from infected chickens. Avian Dis. 49: 118-124.   DOI
78 Brussow H. 2005. Phage therapy: the Escherichia coli experience. Microbiology 151: 2133-2140.   DOI
79 Chopyk J, Nasko DJ, Allard S, Callahan MT, Bui A, Ferelli AMC, et al. 2020. Metagenomic analysis of bacterial and viral assemblages from a freshwater creek and irrigated field reveals temporal and spatial dynamics. Sci. Total Environ. 706: 135395.   DOI
80 Bertozzi Silva J, Storms Z, Sauvageau D. 2016. Host receptors for bacteriophage adsorption. FEMS Microbiol. Lett. 363: fnw002.   DOI
81 Wu JL, Lin HM, Jan L, Hsu YL, Chang LH. 1981. Biological control of fish bacterial pathogen, Aeromonas hydrophila, by bacteriophage AH 1. Fish Pathol. 15: 271-276.   DOI
82 Austin B, Austin DA. 1987. Bacterial fish pathogens: disease in farmed and wild fish, pp. 112-117. Ellis Horwood Ltd., Chichester, United Kingdom.
83 Verner-Jeffreys DW, Algoet M, Pond MJ, Virdee HK, Bagwell NJ, Roberts EG. 2007. Furunculosis in Atlantic salmon (Salmo salar L.) is not readily controllable by bacteriophage therapy. Aquaculture 270: 475-484.   DOI
84 Duarte J, Pereira C, Moreirinha C, Salvio R, Lopes A, Wang D, et al. 2018. New insights on phage efficacy to control Aeromonas salmonicida in aquaculture systems: an in vitro preliminary study. Aquaculture 495: 970-982.   DOI
85 Leverentz B, Conway WS, Alavidze Z, Janisiewicz WJ, Fuchs Y, Camp MJ, et al. 2001. Examination of bacteriophage as a biocontrol method for Salmonella on fresh-cut fruit: a model study. J. Food Prot. 64: 1116-1121.   DOI
86 Vandenheuvel D, Lavigne R, Brussow H. 2015. Bacteriophage therapy: advances in formulation strategies and human clinical trials. Ann. Rev. Virol. 2: 599-618.   DOI
87 Goode D, Allen VM, Barrow PA. 2003. Reduction of experimental Salmonella and Campylobacter contamination of chicken skin by application of lytic bacteriophages. Appl. Environ. Microbiol. 69: 5032-5036.   DOI
88 Huff W, Huff G, Rath N, Balog J, Donoghue A. 2005. Alternatives to antibiotics: utilization of bacteriophage to treat colibacillosis and prevent foodborne pathogens. Poult. Sci. 84: 655-659.   DOI
89 Flaherty JE, Somodi GC, Jones JB, Harbaugh BK, Jackson LE. 2000. Control of bacterial spot on tomato in the greenhouse and field with H-mutant bacteriophages. Hort. Sci. 35: 882-884.
90 Withey S, Cartmell E, Avery LM, Stephenson T. 2005. Bacteriophages-potential for application in wastewater treatment processes. Sci. Total Environ. 339: 1-18.   DOI
91 Shao ZJ. 2001. Aquaculture pharmaceuticals and biologicals: current perspectives and future possibilities. Adv. Drug Deliv. Rev. 50: 229-243.   DOI
92 Thornber, K, Verner‐Jeffreys D, Hinchliffe S, Rahman MM, Bass D, Tyler CR. 2020. Evaluating antimicrobial resistance in the global shrimp industry. Rev. Aquac. (in press).   DOI
93 Fernandez-Bravo A, Figueras MJ. 2020. An update on the genus Aeromonas: taxonomy, epidemiology, and pathogenicity. Microorganisms 8: 129.   DOI
94 Oliveira J, Castilho F, Cunha A, Pereira, MJ. 2012. Bacteriophage therapy as a bacterial control strategy in aquaculture. Aquac. Int. 20: 879-910.   DOI
95 Nawaz M, Sung K, Khan SA, Khan AA, Steele R. 2006. Biochemical and molecular characterization of tetracycline-resistant Aeromonas veronii isolates from catfish. Appl. Environ. Microbiol. 72: 6461-6466.   DOI
96 Furushita M, Shiba T, Maeda T, Yahata M, Kaneoka A, Takahashi Y, et al. 2003. Similarity of tetracycline resistance genes isolated from fish farm bacteria to those from clinical isolates. Appl. Environ. Microbiol. 69: 5336-5342.   DOI
97 Adriaenssens EM, Sullivan MB, Knezevic P, et al. 2020. Taxonomy of prokaryotic viruses: 2018-2019 update from the ICTV Bacterial and Archaeal Viruses Subcommittee. Arch. Virol. 165: 1253-1260.   DOI
98 Colwell RR, MacDonell MT, De Ley J. 1986. Proposal to recognize the family Aeromonadaceae. Int. J. Syst. Evol. Microbiol. 36: 473-477.
99 Reith ME, Singh RK, Curtis B, Boyd JM, Bouevitch A, Kimball J, et al. 2008. The genome of Aeromonas salmonicida subsp. salmonicida A449: insights into the evolution of a fish pathogen. BMC Genomics 9: 427.   DOI
100 Janda JM, Abbott SL. 2010. The genus Aeromonas: taxonomy, pathogenicity, and infection. Clin. Microbiol. Rev. 23: 35-73.   DOI
101 McCarthy DH, Roberts RJ. 1980. Furunculosis of fish - the present state of our knowledge, pp. 293-341. In Droop MA, Jannasch HW (eds). Advances in Aquatic Microbiology, Academic Press, London.
102 Richards GP. 2014. Bacteriophage remediation of bacterial pathogens in aquaculture: a review of the technology. Bacteriophage 4: e975540.   DOI
103 Rao BM, Lalitha KV. 2015. Bacteriophages for aquaculture: are they beneficial or inimical. Aquaculture 437: 146-154.   DOI
104 Austin B, Austin DA. 1993. Bacterial Fish Pathogens: Diseases in Farmed and Wild Fish, 2nd Ed. London: Ellis Horwood.
105 Dallaire-Dufresne S, Tanaka KH, Trudel MV, Lafaille A, Charette SJ. 2014. Virulence, genomic features, and plasticity of Aeromonas salmonicida subsp. salmonicida, the causative agent of fish furunculosis. Vet. Microbiol. 169: 1-7.   DOI
106 Wiklund T, Dalsgaard I. 1998. Occurrence and significance of atypical Aeromonas salmonicida in non-salmonid and salmonid fish species: a review. Dis. Aquat. Organ. 32: 49-69.   DOI
107 Menanteau-Ledouble, S, Kumar, G, Saleh, M, El-Matbouli, M. 2016. Aeromonas salmonicida: updates on an old acquaintance. Dis. Aquat. Organ. 120: 49-68.   DOI
108 McCraw BM. 1952. Furunculosis of fish. US Fish Wildl. Serv., Special scientific report: Fisheries No 84: 1-87.
109 Griffin PJ, Snieszko SF, Friddle SB. 1953. A more comprehensive description of Bacterium salmonicida. Trans. Am. Fish. Soc. 82: 129-138.   DOI
110 Smith IW. 1963. The classification of "Bacterium salmonicida". J. Gen. Microbiol. 33: 263-274.   DOI
111 Giraud E, Blanc G, Bouju-Albert A, Weill FX, Donnay-Moreno C. 2004. Mechanisms of quinolone resistance and clonal relationship among Aeromonas salmonicida strains isolated from reared fish with furunculosis. J. Med. Microbiol. 53: 895-901.   DOI
112 Massicotte MA, Vincent AT, Schneider A, Paquet VE, Frenette M, Charette SJ. 2019. One Aeromonas salmonicida subsp. salmonicida isolate with a pAsa5 variant bearing antibiotic resistance and a pRAS3 variant making a link with a swine pathogen. Sci. Total Environ. 690: 313-320.   DOI
113 Alcaide E, Blasco MD, Esteve C. 2010. Mechanisms of quinolone resistance in Aeromonas species isolated from humans, water and eels. Res. Microbiol. 161: 40-45.   DOI
114 Jones BL, Wilcox MH. 1995. Aeromonas infections and their treatment. J. Antimicrob. Chemother. 35: 453-461.   DOI
115 Varela AR, Nunes OC, Manaia CM. 2016. Quinolone resistant Aeromonas spp. as carriers and potential tracers of acquired antibiotic resistance in hospital and municipal wastewater. Sci. Total Environ. 542: 665-671.   DOI
116 Gutsell JS. 1948. The value of certain drugs, especially sulfa drugs, in the treatment of furunculosis in brook trout, Salvelinus fontinalis. Trans. Am. Fish. Soc. 75: 186-199.   DOI
117 Bullock GL, Stuckey HM, Chen PK. 1974. Corynebacterial kidney disease of salmonids: growth and serological studies on the causative bacterium. Appl. Microbiol. 28: 811-814.   DOI
118 Young R, Wang IN, Roof WD. 2000. Phages will out: strategies of host cell lysis. Trends Microbiol. 8: 120-128.   DOI
119 Simmonds P, Adams MJ, Benko, M, et al. 2017. Consensus statement: virus taxonomy in the age of metagenomics. Nat. Rev. Microbiol. 15: 161-168.   DOI
120 Adriaenssens E, Brister JR. 2017. How to name and classify your phage: an informal guide. Viruses 9: 70.   DOI
121 Brussow H, Canchaya C, Hardt WD. 2004. Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol. Mol. Biol. Rev. 68: 560-602.   DOI
122 Penades JR, Chen J, Quiles-Puchalt N, Carpena N, Novick RP. 2015. Bacteriophage-mediated spread of bacterial virulence genes. Curr. Opin. Microbiol. 23: 171-178.   DOI
123 Merril CR, Scholl D, Adhya SL. 2003. The prospect for bacteriophage therapy in Western medicine. Nat. Rev. Drug Discov. 2: 489-497.   DOI
124 Touchon M, de Sousa JAM, Rocha EP. 2017. Embracing the enemy: the diversification of microbial gene repertoires by phagemediated horizontal gene transfer. Curr. Opin. Microbiol. 38: 66-73.   DOI
125 Brown-Jaque M, Calero-Caceres W, Muniesa M. 2015. Transfer of antibiotic-resistance genes via phage-related mobile elements. Plasmid 79: 1-7.   DOI
126 Stern A, Sorek R. 2011. The phage-host arms race: shaping the evolution of microbes. BioEssays 33: 43-51.   DOI
127 Shabbir MA, Hao H, Shabbir MZ, Wu Q, Sattar A, Yuan Z. 2016. Bacteria vs. bacteriophages: parallel evolution of immune arsenals. Front. Microbiol. 7: 1292.
128 Park KH, Kato H, Nakai T, Muroga K. 1998. Phage typing of Lactococcus garvieae (formerly Enterococcus seriolicida) a pathogen of cultured yellowtail. Fisheries Sci. 64: 62-64.   DOI
129 Igbinosa IH, Igumbor EU, Aghdasi F, Tom M, Okoh AI. 2012. Emerging Aeromonas species infections and their significance in public health. Sci. World J. 2012: 625023.
130 Piotrowska M, Przygodzinska D, Matyjewicz K, Popowska M. 2017. Occurrence and variety of ${\beta}$-lactamase genes among Aeromonas spp. isolated from urban wastewater treatment plant. Front. Microbiol. 8: 863.   DOI
131 Yamamoto A, Maegawa T. 2008. Phage typing of Edwardsiella tarda from eel farm and diseased eel. Aquac. Sci. 56: 611-612.
132 Bradley DE. 1965. The isolation and morphology of some new bacteriophages specific for Bacillus and Acetobacter species. J. Gen. Microbiol. 41: 233-241.   DOI
133 Ackermann HW, Dauguet C, Paterson WD, Popoff M, Rouf MA, Vieu JF. 1985. Aeromonas bacteriophages: reexamination and classification, pp. 175-199. In Annales de l'Institut Pasteur/Virologie (Vol. 136, No. 2). Elsevier, Masson.
134 Paterson WD, Douglas RJ, Grinyer I, McDermott LA. 1969. Isolation and preliminary characterization of some Aeromonas salmonicida bacteriophages. J. Fish Res. Can. 26: 629-632.   DOI
135 Wiebe WJ. Liston J. 1968. Isolation and characterization of a marine bacteriophage. Marine Biol. 1: 244-249.   DOI
136 Popoff M. 1971. Etude sur les Aeromonas salmonicida. II. Caracterisation des bacteriophages actifs sur les Aeromonas salmonicida et lysotypie. Ann. Rech. Vet. 2: 33-45.
137 Ishiguro E, Kay W, Trust T. 1980. Temperate bacteriophages for Aeromonas salmonicida. FEMS Microbiol. Lett. 8: 247-250.   DOI
138 Expert Round Table on Acceptance and Re‐Implementation of Bacteriophage Therapy. 2016. Silk route to the acceptance and re‐implementation of bacteriophage therapy. Biotechnol. J. 11: 595-600.   DOI
139 Nikapitiya C, Dananjaya SHS, Chandrarathna HPSU, Senevirathne A, De Zoysa M, Lee J. 2019. Isolation and characterization of multidrug resistance Aeromonas salmonicida subsp. salmonicida and its infecting novel phage ASP-1 from goldfish (Carassius auratus). Indian J. Microbiol. 59: 161-170.   DOI
140 Feckaninova A, Koscova J, Mudronova D, Popelka P, Toropilova J. 2017. The use of probiotic bacteria against Aeromonas infections in salmonid aquaculture. Aquaculture 469: 1-8.   DOI
141 Zaczek M, Lusiak-Szelachowska M, Jonczyk-Matysiak E, Weber-Dabrowska B, Miedzybrodzki R, Owczarek B, et al. 2016. Antibody production in response to staphylococcal MS-1 phage cocktail in patients undergoing phage therapy. Front. Microbiol. 7: 1681.
142 O'Neill JG. 1979. The immune response of the brown trout, Salmo trutta, L. to MS2 bacteriophage: immunogen concentration and adjuvants. J. Fish Biol. 15: 237-248.   DOI
143 Kalatzis PG, Castillo D, Katharios P, Middelboe M. 2018. Bacteriophage interactions with marine pathogenic Vibrios: implications for phage therapy. Antibiotics 7: 15.   DOI
144 Letchumanan V, Chan KG, Pusparajah P, Saokaew S, Duangjai A, Goh BH, et al. 2016. Insights into bacteriophage application in controlling Vibrio species. Front. Microbiol. 7: 1114.
145 Petrov VM, Ratnayaka S, Nolan JM, Miller ES, Karam JD. 2010. Genomes of the T4-related bacteriophages as windows on microbial genome evolution. Virol. J. 7: 292.   DOI
146 Chen PL, Lamy B, Ko WC. 2016. Aeromonas dhakensis, an increasingly recognized human pathogen. Front. Microbiol. 7: 793.
147 Ishiguro EE, Ainsworth T, Shaw DH, Kay WW, Trust TJ. 1983. A lipopolysaccharide-specific bacteriophage for Aeromonas salmonicida. Can. J. Microbiol. 29: 1458-1461.   DOI
148 Ishiguro E, Ainsworth T, Harkness R, Kay W, Trust T. 1984. A temperate bacteriophage specific for strains of Aeromonas salmonicida possessing A-layer, a cell surface virulence factor. Curr. Microbiol. 10: 199-202.   DOI
149 Khajanchi BK, Fadl AA, Borchardt MA, Berg RL, Horneman AJ, Stemper ME, et al. 2010. Distribution of virulence factors and molecular fingerprinting of Aeromonas species isolates from water and clinical samples: suggestive evidence of water-to-human transmission. Appl. Environ. Microbiol. 76: 2313-2325.   DOI
150 Janda JM. 1991. Recent advances in the study of the taxonomy, pathogenicity, and infectious syndromes associated with the genus Aeromonas. Clin. Microbiol. Rev. 4: 397-410.   DOI
151 Parker JL, Shaw JG. 2011. Aeromonas spp. clinical microbiology and disease. J. Infect. 62: 109-118.   DOI
152 Aravena-Roman M, Inglis TJ, Henderson B, Riley TV, Chang BJ. 2014. Distribution of 13 virulence genes among clinical and environmental Aeromonas spp. in Western Australia. Eur. J. Clin. Microbiol. Infect. Dis. 33: 1889-1895.   DOI
153 Figueira V, Vaz-Moreira I, Silva M, Manaia CM. 2011. Diversity and antibiotic resistance of Aeromonas spp. in drinking and wastewater treatment plants. Water Res. 45: 5599-5611.   DOI
154 Dalsgaard I, Gudmundsdottir BK, Helgason S, Hoie S, Thoresen OF, Wichardt UP, et al. 1998. Identification of atypical Aeromonas salmonicida: inter-laboratory evaluation and harmonization of methods. J. Appl. Microbiol. 84: 999-1006.   DOI
155 Lillehaug A, Lunder T, Poppe TT. 1992. Field testing of adjuvanted furunculosis vaccines in Atlantic salmon, Salmo salar L. J. Fish Dis. 15: 485-496.   DOI
156 Inglis V, Soliman M, Higuera Ciapara I, Richards R. 1992. Amoxycillin in the control of furunculosis in Atlantic salmon parr. Vet. Rec. 130: 45-48.   DOI
157 Stoffregen DA, Chako AJ, Backman S, Babish JG. 1993. Successful therapy of furunculosis in Atlantic salmon, Salmo salar L., using the fluoroquinolone antimicrobial agent enrofloxacin. J. Fish Dis. 16: 219-228.   DOI
158 Midtlyng PJ. 2014. Vaccination against furunculosis, pp. 185-199. In: Gudding R, Atle Lillehaug A, Evensen O (eds.), Fish vaccination, John Wiley & Sons, Chichester.
159 Ellis AE. 1997. Immunization with bacterial antigens: furunculosis. Dev. Biol. Stand. 90: 107-116.
160 Midtlyng PJ. 1997. Vaccination against furunculosis, pp. 382-404. In: Bernoth EM, Ellis AE, Midtlyng PJ, Olivier G, Smith P (eds) Furunculosis: multidisciplinary fish disease research. Academic Press, San Diego, CA. USA.
161 Melingen GO, Wergeland HI. 2002. Physiological effects of an oil-adjuvanted vaccine on out-of-season Atlantic salmon (Salmo salar L.) smolt. Aquaculture 214: 397-409.   DOI
162 Koppang EO, Haugarvoll E, Hordvik I, Aune L, Poppe TT. 2005. Vaccine-associated granulomatous inflammation and melanin accumulation in Atlantic salmon, Salmo salar L., white muscle. J. Fish. Dis. 28: 13-22   DOI
163 Berg A, Rodseth OM, Hansen T. 2007. Fish size at vaccination influence the development of side-effects in Atlantic salmon (Salmo salar). Aquaculture 265: 9-15   DOI
164 Rodgers CJ, Pringle JH, Mccarthy DH, Austin B. 1981. Quantitative and qualitative studies of Aeromonas salmonicida bacteriophage. J. Gen. Microbiol. 125: 335-345.
165 Emmerich R, Weibel E. 1894. Ueber eine durch Bakterien erengte Seuche unter den Forellen. Archives fur Hygiene und Bakteriologie 21: 1-21.
166 Tewari R, Dudeja M, Nandy S, Das, AK 2014. Isolation of Aeromonas salmonicida from human blood sample: a case report. J. Clin. Diagn. Res. 8: 139.
167 Salehi MR, Shadvar S, Sadeghian, M, Doomanlou M, Abdollahi A, Manshadi SA D, et al. 2019. Endocarditis with Aeromonas salmonicida. IDCases 18: e00625.   DOI
168 Ahne W, Capousek A, Popp W. 2000. Bacteriophage typing locates source and spread of Aeromonas salmonicida. Bull. Eur. Assoc. Fish Pathol. 20: 28-30.
169 Fauquet C, Mayo M, Maniloff J, Desselberger U, Ball A. 2005. Virus Taxonomy. pp. 35-85. VIIIth Report of the International Committee on Taxonomy of Viruses.
170 Petrov VM, Nolan JM, Bertrand C, Levy D, Desplats C, Krisch HM, et al. 2006. Plasticity of the gene functions for DNA replication in the T4-like phages. J. Mol. Biol. 361: 46-68.   DOI
171 Comeau AM, Bertrand C, Letarov A, Tetart F, Krisch HM. 2007. Modular architecture of the T4 phage superfamily: a conserved core genome and a plastic periphery. Virology 362: 384-396.   DOI
172 Iranzo J, Krupovic M, Koonin EV. 2016. The double-stranded DNA virosphere as a modular hierarchical network of gene sharing. MBio 7: e00978-16.
173 Tetart F, Desplats C, Kutateladze M, Monod C, Ackermann HW, Krisch HM. 2001. Phylogeny of the major head and tail genes of the wide-ranging T4-type bacteriophages. J. Bacteriol. 183: 358-366.   DOI
174 Pavan M, Abbott S, Zorzopulos J, Janda J. 2000. Aeromonas salmonicida subsp. pectinolytica subsp. nov., a new pectinase-positive subspecies isolated from a heavily polluted river. Int. J. Syst. Evol. Microbiol. 50: 1119-1124.   DOI
175 McCarthy DH. 1977. The identification and significance of atypical strains of Aeromonas salmonicida. Bull. Off. Int. Epiz. 87: 459-463.
176 Popoff M. 1984. Genus III. Aeromonas. In: Bengey's manual of systematic bacteriology, Vol. 1. Williams and Wilkins, Baltimore, USA.
177 Austin DA, McIntosh D, Austin B. 1989. Taxonomy of fish associated Aeromonas spp., with the description of Aeromonas salmonicida subsp. smithia subsp. nov. Syst. Appl. Microbiol. 11: 277-290.   DOI
178 Parte AC. 2014. LPSN-list of prokaryotic names with standing in nomenclature. Nucleic Acids Res. 42: (Database issue):D613-616.   DOI
179 Austin B, Austin DA, Dalsgaard I, Gudmundsdóttir BK, Hoie S, Thornton JM, et al. 1998. Characterization of atypical Aeromonas salmonicida by different methods. Syst. Appl. Microbiol. 21: 50-64.   DOI
180 Garcia J, Larsen, J, Dalsgaard, I, Pedersen K. 2000. Pulsed-field gel electrophoresis analysis of Aeromonas salmonicida ssp. salmonicida. FEMS Microbiol. Lett. 190: 163-166.   DOI
181 O'hIci B, Olivier, G, Powell. R. 2000. Genetic diversity of the fish pathogen Aeromonas salmonicida demonstrated by random amplified polymorphic DNA and pulsed-field gel electrophoresis analyses. Dis. Aquat. Organ. 39: 109-119.   DOI
182 Weinbauer MG, Suttle CA. 1996. Potential significance of lysogeny to bacteriophage production and bacterial mortality in coastal waters of the gulf of Mexico. Appl. Environ. Microbiol. 62: 4374-4380.   DOI
183 Coscelli GA, Bermúdez R, Losada AP, Santos Y, Quiroga MI. 2015. Vaccination against Aeromonas salmonicida in turbot (Scophthalmus maximus L.): study of the efficacy, morphological changes and antigen distribution. Aquaculture 445: 22-32   DOI
184 Sime-Ngando T. 2014. Environmental bacteriophages: viruses of microbes in aquatic ecosystems. Front. Microbiol. 5: 355.   DOI
185 Virgin HW. 2014. The virome in mammalian physiology and disease. Cell 157: 142-150.   DOI
186 Zablocki O, Adriaenssens EM, Cowan D. 2016. Diversity and ecology of viruses in hyperarid desert soils. Appl. Environ. Microbiol. 82: 770-777.   DOI
187 Freifelder DM. 1987. Microbial Genetics, Jones and Bartlett, Portolla Valley, CA
188 Ackermann HW, DuBow MS.1987. Viruses of prokaryotes. CRC press.
189 Touchon M, Bernheim A, Rocha EP. 2016. Genetic and life-history traits associated with the distribution of prophages in bacteria. ISME J. 10: 2744-2754.   DOI
190 Howard-Varona C, Hargreaves KR, Abedon ST, Sullivan MB. 2017 Lysogeny in nature: mechanisms, impact and ecology of temperate phages. ISME J. 11: 1511-1520.   DOI
191 Almeida A, Cunha A, Gomes NCM, Alves E, Costa L, Faustino MAF. 2009. Phage therapy and photodynamic therapy: low environmental impact approaches to inactivate microorganisms in fish farming plants. Mar. Drugs 7: 268-313.   DOI
192 Weinbauer MG. 2004. Ecology of prokaryotic viruses. FEMS Microbiol. Rev. 28: 127-181.   DOI
193 Nolan J, Petrov V, Bertrand C, Krisch H, Karam J. 2006. Genetic diversity among five T4-like bacteriophages. Virol. J. 3: 30.   DOI
194 Lavigne R, Darius P, Summer EJ, Seto D, Mahadevan P, Nilsson AS, et al. 2009. Classification of Myoviridae bacteriophages using protein sequence similarity. BMC Microbiol. 9: 224.   DOI
195 Petrov VM, Ratnayaka S, Karam JD. 2010. Genetic insertions and diversification of the PolB-type DNA polymerase (gp43) of T4-related phages. J. Mol. Biol. 395: 457-474.   DOI
196 Martin-Carnahan A, Joseph SW. 2005. Aeromonadaceae. In: Bergey's manual of systematic bacteriology, 2nd Ed. Vol. 2. Springer. New York. USA.
197 Roger F, Marchandin H, Jumas-Bilak, E, Kodjo, A, Lamy, B, colBVH Study Group. (2012). Multilocus genetics to reconstruct aeromonad evolution. BMC Microbiol. 12: 62.   DOI
198 Housby JN, Mann NH. 2009. Phage therapy. Drug Discov. Today 14: 536-540.   DOI
199 Alisky J, Iczkowski K, Rapoport A, Troitsky N. 1998. Bacteriophages show promise as antimicrobial agents. J. Infect. 36: 5-15.   DOI
200 Ackermann, H. W. 2007. 5500 Phages examined in the electron microscope. Arch. Virol. 152: 227-243.   DOI
201 Suttle CA. 2005. Viruses in the sea. Nature 437: 356-361.   DOI