• Title/Summary/Keyword: bacteriocin-like activity

Search Result 22, Processing Time 0.029 seconds

Characterization of Bacteriocin-Like Substances Produced by Bacillus subtilis MJP1 (Bacillus subtilis MJP1이 생산하는 Bacteriocin-Like Substances)

  • Yang, Eun-Ju;Chang, Hae-Choon
    • Microbiology and Biotechnology Letters
    • /
    • v.35 no.4
    • /
    • pp.339-346
    • /
    • 2007
  • The MJP1 bacterial strain, which possesses antifungal activity, was isolated from meju and identified as Bacillus subtilis based on its morphological and biochemical properties, as well as its 16S rRNA sequence. Antimicrobial activity was found against various species of Gram-positive bacteria, yeasts, and molds, including food-spoilage microorganisms. The antifungal activity was found to be stable after heat and proteolytic enzyme treatment, and in the pH range of $6.0{\sim}10.0$. The antibacterial activity was stable in the pH range of $6.0{\sim}10.0$, but about 50% of the activity was lost after 24 hr at $30^{\circ}C$. The antibacterial compound was also inactivated by proteolytic enzyme treatment, indicating its proteinaceous nature. The apparent molecular masses of the partially purified antifungal and antibacterial compounds, as indicated by using the direct detection method in Tricine-SDS-PAGE, were approximately 2.4 kDa and 4.5 kDa, respectively. These studies suggest that B. subtilis MJP1 produces two bacteriocin-like substances with antifungal and antibacterial activities.

Bacteriophage-like Particles Induced by Mitomycin C in Bacillus circulans F-2 (Mitomycin C에 의해 유도되는 Bacillus cirulans F-2의 Bacteriophage-like 입자)

  • 김철호;권석태;이대실;타니구치하지메
    • Microbiology and Biotechnology Letters
    • /
    • v.18 no.3
    • /
    • pp.221-226
    • /
    • 1990
  • To detect prophages and bacterioeins, twenty strains of Bacillus circulans were treated with mitomycin C. The resulted lysates were subjected to electron microscopy, and also examined for killing and plaque-forming activities. Fifteen strains showed killing activity on two or more strains of Bacillue circulans. Killing agents were centrifuged in linear 5 to 20% sucrose gradient, and studied with electron microscopy which revealed the presence of particles.They looked morphologically like phage tail of 190 nm long with fiber (FA9, FA5) or without fiber (FA1, FA6), T even phage-like particle with a head of 50 nm in diameter and a tail of 140 nm long (FA7), or T7 phage-like particle with a head of 70 nm in diameter and a tail of 20 nm long (FA17). The killing agent of FA17 showed phage-forming activity on several strains different from killing sensitive strains of Bacillus circulans.

  • PDF

Cultural Conditions of Lactococcus sp. 1112-1 for Production of Bacteriocin-like Substance (Bacteriocin을 생산하는 Lactococcus sp. 1112-1의 배양조건)

  • 유진영;이인선;최신양;권동진;정건섭
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.2
    • /
    • pp.183-189
    • /
    • 1992
  • Cultural conditions of Lactococcus sp. 1112-1, a bacteriocin producing strain, were studied for enhancing its production with regard to environmental and nutritional factors. Optimal compositions of culture medium for bacteriocin production were glucose 20 g/l as carbon source, casein acid hydrolyzate 15 g/l as nitrogen source, and sodium acetate 3 g/l, ammonium citrate 2 g/l as morganic salt with other basal components. The optimal pH of medium and fermentation temperature were 6.2 and $35^{\circ}C$, respectively. This strain required exclusively riboflavin and pantothenic acid for growth and bacteriocin production. In a 1l batch culture, stationary phase emerged after 8.5 hours of fermentation when 1.81 g/l of biomass was accumulated. The maximum antimicrobial activity was 3,894 IU/ml after 12 hours.

  • PDF

Bactericidal Effect of Bacteriocin of Lactobacillus plantarum K11 Isolated from Dongchimi on Escherichia coli O157

  • Lim, Sung-Mee;Im, Dong-Soon
    • Journal of Food Hygiene and Safety
    • /
    • v.22 no.3
    • /
    • pp.151-158
    • /
    • 2007
  • Among 68 strains of lactic acid bacteria (LAB) isolated from Dongchimi, a strain K11 was selected due to its bactericidal activity against Escherichia coli O157 The strain K11 was identified as Lactobacillus plantarum, based on physiological and biochemical characteristics. In the late exponential phase, La. plantarum K11 showed maximum bacteriocin activity (12,800 BU/mL) and maintained until the early stationary phase. The bacteriocin activity was completely inactivated by all the proteolytic enzymes such as pepsin, protease, proteinase K, papain, chymotrypsin, and trypsin, but the activity was not affected by catalase, a-amylase, lysozyme, and lipase, suggesting proteinaceous nature of the bacteriocin. Additionally, this activity was not affected in the pH range from 3.0 to 9.0 and under storage conditions like 30 days at -20,4, or $25^{\circ}C$. Although the bacteriocin activity was absolutely lost after 15 min treatment at 121, it was relatively stable at $70^{\circ}C$ for 60 min or $100^{\circ}C$ for 30 min. The activity was disappeared by treatment with acetone, benzene, ethanol, or methanol, but it was not affected by treatment with chloroform or hexane. The antibacterial activity of the bacteriocin was good against some LAB including Lactobacillus spp., Enterococcus spp., and Streptococcus spp., but not against food-borne pathogens such as Bacillus spp., Listeria spp., and Staphylococcus spp. as well as yeasts and molds. Especially, some intestinal bacteria such as Enterobacter aerogenes and E. coli were significantly affected by the bacteriocin of La, plantarum K11. Furthermore, the addition of 640 BU/mL resulted in the complete clearance of E. coli O157 after 10 hr.

Distribution and Biodiversity of Lactic Acid Bacteria Having Bacteriocin-like Activity from Fresh Fruits and Vegetables (신선 과채류에 존재하는 박테리오신 유사 활성을 지니는 유산균의 분포와 다양성)

  • Park, Young-Seo;Jang, Jae Kweon;Choi, Young Jin;Chung, Myong-Soo;Park, Hoon;Shim, Kun-Sub
    • Food Engineering Progress
    • /
    • v.13 no.1
    • /
    • pp.64-69
    • /
    • 2009
  • From the 25 fresh fruits and vegetable products, 1,250 isolates grown on MRS agar media were screened for the inhibitory activity on the growth of Escherichia coli 0157:H7, Listeria monocytogenes, and Bacillus cereus as well as Lactobacillus plantarum, L. casei, and Lactococcus lactis subsp. lactis. Among them, 607 isolates (49% of total isolates) from 23 different foods produced growth inhibitory activity on the E. coli 0157:H7, L. monocytogenes, or B. cereus. When these isolates were screened for the inhibitory activity on the growth of L. plantarum, L. casei, and Lactococcus lactis subsp., 24 isolates (3% of total isolates) from 7 food samples showed bacteriocin-like activity. These isolates had typical physiological characteristics of lactic acid bacteria, which indicated these isolates were strains of lactic acid bacteria. The inhibitor from 3 out of 24 revealed as nicin. From the RAPD-PCR profiles, 24 strains was classified and it was also indicated that most of the strains isolated from same produce showed similar phylogenetic profile.

Purification and Characterization of the Bacteriocin Thuricin Bn1 Produced by Bacillus thuringiensis subsp. kurstaki Bn1 Isolated from a Hazelnut Pest

  • Ugras, Serpil;Sezen, Kazim;Kati, Hatice;Demirbag, Zihni
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.2
    • /
    • pp.167-176
    • /
    • 2013
  • A novel bioactive molecule produced by Bacillus thuringiensis subsp. kurstaki Bn1 (Bt-Bn1), isolated from a common pest of hazelnut, Balaninus nucum L. (Coleoptera: Curculionidae), was determined, purified, and characterized in this study. The Bt-Bn1 strain was investigated for antibacterial activity with an agar spot assay and well diffusion assay against B. cereus, B. weinhenstephenensis, L. monocytogenes, P. savastanoi, P. syringae, P. lemoignei, and many other B. thuringiensis strains. The production of bioactive molecule was determined at the early logarithmic phase in the growth cycle of strain Bt-Bn1 and its production continued until the beginning of the stationary phase. The mode of action of this molecule displayed bacteriocidal or bacteriolytic effect depending on the concentration. The bioactive molecule was purified 78-fold from the bacteria supernatant with ammonium sulfate precipitation, dialysis, ultrafiltration, gel filtration chromatography, and HPLC, respectively. The molecular mass of this molecule was estimated via SDS-PAGE and confirmed by the ESI-TOFMS as 3,139 Da. The bioactive molecule was also determined to be a heat-stable, pH-stable (range 6-8), and proteinase K sensitive antibacterial peptide, similar to bacteriocins. Based on all characteristics determined in this study, the purified bacteriocin was named as thuricin Bn1 because of the similarities to the previously identified thuricin-like bacteriocin produced by the various B. thuringiensis strains. Plasmid elution studies showed that gene responsible for the production of thuricin Bn1 is located on the chromosome of Bt-Bn1. Therefore, it is a novel bacteriocin and the first recorded one produced by an insect originated bacterium. It has potential usage for the control of many different pathogenic and spoilage bacteria in the food industry, agriculture, and various other areas.

Isolation and Characterization of a Bacteriocin-Producing Lactobacillus sakei B16 from Kimchi (김치에서 박테리오신을 생산하는 Lactobacillus sakei B16의 분리 및 특성 분석)

  • Ahn, Ji-Eun;Kim, Jin-Kyoung;Lee, Hyeong-Rho;Eom, Hyun-Ju;Han, Nam-Soo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.5
    • /
    • pp.721-726
    • /
    • 2012
  • Lactic acid bacteria (LAB) are able to secrete antimicrobial peptides called bacteriocins, which inhibit other bacteria such as pathogenic microorganisms. Therefore, bacteriocin-producing starters can be used as natural biopreservatives for various foods. The objective of this study was to screen and characterize bacteriocin-producing LAB from Kimchi and to investigate their applicability as a starter in Kimchi fermentation. To screen bacteriocin-producing LAB, gram-positive and gram-negative bacteria were used as indicators. To measure the antimicrobial activities of isolates, agar well diffusion assay method was used. According to the results, bacteriocin produced by $Lb.$ $sakei$ B16 showed antimicrobial activity against $Listeria$ $monocytogenes$ ATCC 19115, $Escherichia$ $coli$ KCTC 1467, and$Lactobacillus$ $plantarum$ KTCT 3104. Furthermore, bacteriocin was very stable after treatment with high temperature and high and low pH, but its effects were inhibited by treatment with proteolytic enzymes such as trypsin, proteinase K, and ${\alpha}$-chymotrypsin, revealing their bacteriocin-like protein- based structure. These results suggest that $Lb.$ $sakei$ B16 and its bacteriocin are good candidates as a functional probiotic and natural biopreservative, respectively, in fermented foods.

Development of Antimicrobial Edible Film from Defatted Soybean Meal Fermented by Bacillus subtilis

  • KIM , HYUNG-WOOK;KIM, KYUNG-MI;KO, EUN-JUNG;LEE, SI-KYUNG;HA, SANG-DO;SONG, KYUNG-BIN;PARK, SANG-KYU;KWON, KI-SUNG;BAE, DONG-HO
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.6
    • /
    • pp.1303-1309
    • /
    • 2004
  • In order to extend shelf-life of the packaged or coated foods, an antibacterial edible film was developed. Antimicrobial activities of 9 bacteriocin-like substance (BLS)­producing strains were evaluated after growing them on defatted soybean meal medium (DSMM). Bacillus subtilis was selected among those, because it showed the biggest inhibition zone against 6 problem bacteria in food. The antimicrobial edible film, containing $0.32\%$ of BLS, was produced from the fermented soybean meal with B. subtilis at the optimum condition of pH 7.0-7.5 and $33^{\circ}C$ for 33 h. The antimicrobial activity of the film was over $50\%$ of the maximum activity after film production with heat treatment at $90^{\circ}C$ and pH adjustment to 9. When the soy protein film with BLS was applied on the agar media containing E. coli, the growth inhibition was much higher than the ordinary soy protein film. These results indicate that the soy protein film with BLS from B. subtilis can be used as a new packaging material to extend the shelf-life of foods.

Potential Control of Foodborne Pathogenic Bacteria by Pediococcus pentosaceus and Lactobacillus graminis Isolated from Fresh Vegetables

  • Gonzalez-Perez, C.J.;Vargas-Arispuro, I.;Aispuro-Hernandez, E.;Aguilar-Gil, C.L.;Aguirre-Guzman, Y.E.;Castillo, A.;Hernandez-Mendoza, A.;Ayala-Zavala, J.F.;Martinez-Tellez, M.A.
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.2
    • /
    • pp.183-194
    • /
    • 2019
  • The consumption of fresh vegetables has been related to recurrent outbreaks of foodborne diseases (FBD) worldwide. Therefore, the development of effective alternative technologies is necessary to improve the safety of these products. This study aimed to isolate and identify epiphytic lactic acid bacteria (LAB) from fresh fruits and leafy vegetables and characterize their antagonistic capacity due to their ability to produce bacteriocins or antibacterial compounds. For this, 92 LAB isolates from fruits and leafy vegetables were screened for antagonistic activity. Two strains with the highest and broadest antagonistic activities were selected for further characterization; one from cantaloupe melon (strain CM175) and one from cilantro leaves (strain C15). The cell-free supernatants (CFS) of CM175 and C15 were found to exhibit antagonistic activity against FBD-causing pathogens. The CM175 and C15 strains were identified as Pediococcus pentosaceus and Lactobacillus graminis, respectively. Notably, the P. pentosaceus CM175 CFS stopped the growth of Salmonella Typhimurium, Salmonella Saintpaul, Staphylococcus aureus, and Listeria monocytogenes, and delayed Escherichia coli O157:H7 growth. Moreover, L. graminis C15 CFS delayed the growth of all indicator pathogens, but did not completely stop it. Organic acids and bacteriocin-like molecules were determined to be possibly exerting the observed antagonistic activity of the identified LAB strains. Thus, application of the antagonistic compounds produced by Pediococcus pentosaceus and Lactobacillus graminis could be a novel and ecological strategy in developing antimicrobial biopreservatives for the food industry and mitigating FBD by reducing the biological contamination in fruit and vegetable orchards, mainly via their potential in controlling both gram-negative and gram-positive pathogenic bacteria.

Anti-Helicobacter pylori Activity of Bifidobacterium spp.

  • Bae, Eun-Ah;Kim, Dong-Hyun;Han, Myung-Joo
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.4
    • /
    • pp.532-534
    • /
    • 2000
  • The inhibitory effects of different Bifidobacterium spp. on the growth of Helicobacter pylori (HP) were investigated. A significant suppression of HP growth occurred only when HP was inoculated onto a petri dish containing 0.1 mg/ml of Bifidobacterium spp. When HP was separately cultured with B. breve K-110, B. catenulatum K-309, B magnum K-311, B. magnum K-321, and B. cuniculi K-513, the urease activity was also inhibited by these Bifidobacterium spp. Therefore, it appears that these Bifidobacterium spp. excrete a heat-labile inhibitory component for HP growth into the culture medium. Although most organic acids produced by the Bifidobacterium spp. inhibited the growth of HP, the HP growth was not inhibited by the physiological concentrations of organic acids produced in bifidobacteria-cultured media. Accordingly, these results suggest that some Bifidobacterium spp. may produce antibiotic-like compounds (bacteriocins).

  • PDF