Browse > Article

Development of Antimicrobial Edible Film from Defatted Soybean Meal Fermented by Bacillus subtilis  

KIM , HYUNG-WOOK (Department of Applied Biology and Chemistry, Konkuk University)
KIM, KYUNG-MI (Department of Applied Biology and Chemistry, Konkuk University)
KO, EUN-JUNG (Department of Applied Biology and Chemistry, Konkuk University)
LEE, SI-KYUNG (Department of Applied Biology and Chemistry, Konkuk University)
HA, SANG-DO (Department of Food Science and Technology, Chung-Ang University)
SONG, KYUNG-BIN (Department of Food Science and Technology, Chungnam National University)
PARK, SANG-KYU (Material Science and Engineering, Kwangju Institute of Science and Technology)
KWON, KI-SUNG (Korea Food and Drug Administration)
BAE, DONG-HO (Department of Applied Biology and Chemistry, Konkuk University)
Publication Information
Journal of Microbiology and Biotechnology / v.14, no.6, 2004 , pp. 1303-1309 More about this Journal
Abstract
In order to extend shelf-life of the packaged or coated foods, an antibacterial edible film was developed. Antimicrobial activities of 9 bacteriocin-like substance (BLS)­producing strains were evaluated after growing them on defatted soybean meal medium (DSMM). Bacillus subtilis was selected among those, because it showed the biggest inhibition zone against 6 problem bacteria in food. The antimicrobial edible film, containing $0.32\%$ of BLS, was produced from the fermented soybean meal with B. subtilis at the optimum condition of pH 7.0-7.5 and $33^{\circ}C$ for 33 h. The antimicrobial activity of the film was over $50\%$ of the maximum activity after film production with heat treatment at $90^{\circ}C$ and pH adjustment to 9. When the soy protein film with BLS was applied on the agar media containing E. coli, the growth inhibition was much higher than the ordinary soy protein film. These results indicate that the soy protein film with BLS from B. subtilis can be used as a new packaging material to extend the shelf-life of foods.
Keywords
Bacteriocin-like substance (BLS); functional film; antimicrobial activity; B. subtilis; soybean meal;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 9  (Related Records In Web of Science)
연도 인용수 순위
1 Galvez, A., E. Valdivia, H. Abriouel, E. Camafeita, E. Mendez, M. Martinez-Bueno, and M. Maqueda. 1998. Isolation and characterization of enterocin EJ97, a bacteriocin produced by Enterococcus faecalis EJ97. Arch Microbiol. 171: 59-65
2 Han, K. S., K. S. Joo, and S. H. Kim. 1999. Characteristics and purification of bacteriocin produced by Lactobacillus acidophilus GP4A. Korean Dairy Technol. 17(1): 1-10
3 Kang, S. C., H. J. Kim, S. W. Nam, and D. K. Oh. 2002. Surface immobilization on silica of endoxylanase produced from recombinant Bacillus subtilis. J. Microbiol. Biotechnol. 12(5): 766-772
4 Khouti, Z. and J. P. Simon. 1997. Detection and partial characterization of a bacteriocin produced by Carnobacterium piscicola 213. J. Industrial Microbiol. Biotechnol. 19: 28- 33
5 Kim, Y. S. and S. D. Kim 1994. Antifungal mechanism and properties of antibiotic substances produced by Bacillus subtilis YB-70 as a biological control agent. J. Microbiol. Biotechnol. 4(4): 296-304
6 Kumar, C. G. and S. K. Anand. 1998. Significance of microbial biofilms in food industry: Review. International J. Food Microbiol. 42: 9-27
7 Mariniello, L., P. Di-Pierro, C. Esposito, A. Sorrentino, P. Masi, and R. Porta. 2003. Preparation and mechanical properties of edible pectin-soy flour films obtained in the absence or presence of transglutaminase. J. Biotechnol. 102: 191-198
8 Mataragas, M., J. Metaxopoulos, M. Galiotou, and E. H. Drosinos. 2003. Influence of pH and temperature on growth and bacteriocin production by Leuconostoc mesenteroides L124 and Lactobacillus curvatus L442. Meat Science 64: 265-271
9 Paik, H. D., N. K. Lee, K. H. Lee, Y. I. Hwang, and J. G. Pan. 2000. Identification and partial characterization of cerein BS229, a bacteriocin produced by Bacillus cereus BS229. J. Microbiol. Biotechnol. 10(2): 195-200
10 Parente, E. and A. Ricciardi. 1999. Production, recovery and purification of bacteriocins from lactic acid bacteria. Appl. Microbiol. Biotechnol. 52: 628-638
11 Park, S. Y., Y. J. Yang, Y. B. Kim, and C. Lee. 2002. Characterization of subtilein, a bacteriocin from Bacillus subtilis CAU131. J. Microbiol. Biotechnol. 12(2): 228-234
12 Pinchuk, I. V., P. Bressollier, I. B. Sorokulova, B. Verneuil, and M. C. Urdaci. 2002. Amicoumacin antibiotic production and genetic diversity of Bacillus subtilis strains isolated from different habitats. Research Microbiol. 153: 269-276
13 Rhim, J. W., A. Gennadios, A. Handa, C. L. Weller, and M. A. Hanna. 2000. Solubility, tensile, and color properties of modified soy protein isolate films. J. Agric. Food Chem. 48: 4937-4941
14 Messi, P., M. Bondi, C. Savia, R. Battini, and G. Monicardi. 2001. Detection and preliminary characterization of a bacteriocin produced by a Lactobacillus plantarum strain. International J. Food Microbiol. 64: 193-198
15 Park, S. Y. and H. J. Park. 1998. Mechanical properties of kcarrageenan and chitosan film composite. Korean J. Food Sci. Technol. 30: 855-861
16 Cho, D. L., K. Na, E. K. Shin, H. J. Kim, K. Y. Lee, J. H. Go, and C. S. Choi. 2001. A study on the preparation of antibacterial biopolymer film. J. Microbiol. Biotechnol. 11(2): 193-198
17 Kim, T. W., J. Y. Lee, S. H. Jung, Y. M. Kim, J. S. Jo, D. K. Chung, H. J. Lee, and H. Y. Kim. 2002. Identification and distribution of predominant lactic acid bacteria in kimchi, a Korean traditional fermented food. J. Microbiol. Biotechnol. 12(4): 635-642
18 Parente, E., C. Brienza, M. Moles, and A. Ricciardi. 1995. A comparison of methods for measurement of bacteriocin activity. J. Microbiol. Methods 22: 95-108
19 Perez, C., C. Suarez, and G. R. Castro. 1992. Production of antimicrobials by Bacillus subtilis MIR 15. J. Biotechnol. 26: 331-336
20 Kim, P. I. and K. C. Chung. 2004. Production of an antifungal protein for control of Colletotrichum lagenarium by Bacillus amyloliquefaciens MET 0908. FEMS Microbiol. Lett. 234: 177-183
21 Koo, K. M., N. K. Lee, Y. I. Hwang, and H. D. Park. 2000. Identification and partial characterization of Lacticin SA72, a bacteriocin produced by Lactococcus lactis SA 72 isolated from Jeot-gal. J. Microbiol. Biotechnol. 10(4): 488-495
22 Oh, S. J., M. H. Kim, J. J. Cherey, and R. W. Worobo. 2003. Purification and characterization of an antilisterial bacteriocin produced by Leuconostoc sp. W65. J. Microbiol. Biotechnol. 13(5): 680-686
23 Kuk, J. H., S. J. Ma, J. H. Moon, K. Y. Kim, S. H. Choi, and K. H. Park. 2002. Antibacterial and antifungal activities of a naphthoquinone derivative isolated from the fruits of Cathalpa ovata G. Don. J. Microbiol. Biotechnol. 12(5): 858-863
24 Ettayebi, K., J. E. Yamani, and B. Rossi-Hassani. 2000. Synergistic effects of nisin and thymol on antimicrobial activities in Listeria monocytogenes and Bacillus subtilis. FEMS Microbiol. Lett. 183: 191-195
25 Kim, M. H., S. J. Oh, and R. A. Durst. 2003. Detection of E. coli O157:H7 using combined procedure of immunomagnetic separation and test strip liposome immunoassay. J. Microbiol. Biotechnol. 13(4): 509-516
26 Chung, T. W., U. H. Jin, and C. H. Kim. 2003. Salmonella typhimurium LPS confers its resistance to antibacterial agents of baicalin of Scutellaria bacicalensis George and novoviocin: Complementation of the rfaE gene required for ADP-L-glycero-D-manno-heptose biosynthesis of lipopolysaccharide. J. Microbiol. Biotechnol. 13(4): 564- 570
27 Motta, A. and A. Brandelli. 2003. Influence of growth conditions on bacteriocin production by Brevibacterium linens. Appl. Microbiol. Biotechnol. 62: 163-167
28 Sabato, S. F., B. Ouattara, H. Yu, G. DAprano, C. Le Tien, M. A. Mateescu, and M. Lacroix. 2001. Mechanical and barrier properties of cross-linked soy and whey protein based films. J. Agric. Food Chem. 49: 1397-1403   DOI   ScienceOn
29 Cleveland J., T. J. Montrille, I. F. Nes, and M. L. Chickindas. 2001. Bacteriocins: Safe, natural antimicrobials for food preservation. International J. Food Microbiol. 71: 1-20
30 Kim, T. W., S. H. Jung, J. Y. Lee, S. K. Choi, and S. H. Park. 2003. Identification of lactic acid bacteria in kimchi using SDS-PAGE profiles of whole cell proteins. J. Microbiol. Biotechnol. 13(1): 119-124
31 Kim, J. W., J. G. Kim, B. K. Park, O. H. Choi, C. S. Park, and I. G. Hwang. 2003. Identification of genes for biosynthesis of antibacterial compound from Pseudomonas fluorescens B16, and its activity Ralstonia salanacearum. J. Microbiol. Biotechnol. 13(2): 292-300
32 Onda, T., F. Yanagida, M. Tsuji, T. Hara, and K. Yokosuka. 2003. Production and purification of a bacteriocin peptide produced by Lactococcus sp. strain GM005, isolated from Miso-paste. International J. Food Microbiol. 87: 153-159
33 Michel-Briand, Y. and C. Baysse. 2002. The pyocins of Pseudomonas aeruginosa. Biochemie 84: 499-510
34 Cho, S. J., S. K. Lee, B. J. Cha, Y. H. Kim, and H. S. Shin. 2003. Detection and characterization of the Gloeosporium gloeosporioides growth inhibitory compound iturin A from Bacillus subtilis strain KSO3. FEMS. Microbiol. Lett. 223: 47-51
35 Micard, V., R. Belamri, M. H. Morel, and S. Guilbert. 2000. Properties of chemically and physically treated wheat gluten. J. Agric. Food Chem. 48: 2948-2953
36 Moon, G. S., W. J. Kim, and M. H. Kim. 2002. Synergistic effects of bacteriocin-producing Pediococcus acidilactici K10 and organic acids on inhibiting E. coli O157:H7 and applications in ground beef. J. Microbiol. Biotechonol. 12(6): 936-942
37 Park, S. K., C. O. Ree, D. H. Bae, and S. Hetiarachchy. 2001. Mechanical properties and water-vapor permeability of soy protein film affected by calcium salts and glucono-$\delta$-lactone. J. Agric. Food Chem. 49: 2308-2312
38 Cagi, A., Z. Ustunol, and E. T. Ryser. 2003. Antimicrobial edible film and coatings. J. Food Protection 67(4): 833- 848