Browse > Article
http://dx.doi.org/10.4014/jmb.1209.09056

Purification and Characterization of the Bacteriocin Thuricin Bn1 Produced by Bacillus thuringiensis subsp. kurstaki Bn1 Isolated from a Hazelnut Pest  

Ugras, Serpil (Department of Biology, Faculty of Science, Karadeniz Technical University)
Sezen, Kazim (Department of Biology, Faculty of Science, Karadeniz Technical University)
Kati, Hatice (Department of Biology, Faculty of Arts and Science, Giresun University)
Demirbag, Zihni (Department of Biology, Faculty of Science, Karadeniz Technical University)
Publication Information
Journal of Microbiology and Biotechnology / v.23, no.2, 2013 , pp. 167-176 More about this Journal
Abstract
A novel bioactive molecule produced by Bacillus thuringiensis subsp. kurstaki Bn1 (Bt-Bn1), isolated from a common pest of hazelnut, Balaninus nucum L. (Coleoptera: Curculionidae), was determined, purified, and characterized in this study. The Bt-Bn1 strain was investigated for antibacterial activity with an agar spot assay and well diffusion assay against B. cereus, B. weinhenstephenensis, L. monocytogenes, P. savastanoi, P. syringae, P. lemoignei, and many other B. thuringiensis strains. The production of bioactive molecule was determined at the early logarithmic phase in the growth cycle of strain Bt-Bn1 and its production continued until the beginning of the stationary phase. The mode of action of this molecule displayed bacteriocidal or bacteriolytic effect depending on the concentration. The bioactive molecule was purified 78-fold from the bacteria supernatant with ammonium sulfate precipitation, dialysis, ultrafiltration, gel filtration chromatography, and HPLC, respectively. The molecular mass of this molecule was estimated via SDS-PAGE and confirmed by the ESI-TOFMS as 3,139 Da. The bioactive molecule was also determined to be a heat-stable, pH-stable (range 6-8), and proteinase K sensitive antibacterial peptide, similar to bacteriocins. Based on all characteristics determined in this study, the purified bacteriocin was named as thuricin Bn1 because of the similarities to the previously identified thuricin-like bacteriocin produced by the various B. thuringiensis strains. Plasmid elution studies showed that gene responsible for the production of thuricin Bn1 is located on the chromosome of Bt-Bn1. Therefore, it is a novel bacteriocin and the first recorded one produced by an insect originated bacterium. It has potential usage for the control of many different pathogenic and spoilage bacteria in the food industry, agriculture, and various other areas.
Keywords
Bacillus thuringiensis; bacteriocin; thuricin Bn1; entomopathogens; hazelnut pests;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Barboza-Corona, J. E., H. Vazquez-Acosta, D. K. Bideshi, and R. Salcedo-Hernandez.. 2007. Bacteriocin-like inhibitor substances produced by Mexican strains of Bacillus thuringiensis. Arch. Microbiol. 187: 117-126.   DOI   ScienceOn
2 Abriouel, H., C. M. Franz , N. Ben Omar, and A. Galvez. 2011. Diversity and applications of Bacillus bacteriocins. FEMS Microbiol. Rev. 35: 201-232.   DOI   ScienceOn
3 Ahern, M., S Verschueren, and D. V. Sinderen. 2003. Isolation and characterisation of a novel bacteriocin produced by Bacillus thuringiensis strain B439. FEMS Microbiol. Lett. 220: 127-131.   DOI   ScienceOn
4 Anderson, I., A. Sorokin, and V. Kapatral. 2005. Comparative genome analysis of Bacillus cereus group genomes with Bacillus subtilis. FEMS Microbiol. Lett. 250: 175-184.   DOI   ScienceOn
5 Barboza-Corona, J. E., N. Fuente-Salcido, N. Alva-Murillo, A. Ochoa-Zarzosa, and J. E. Lopez-Meza. 2009. Activity of bacteriocins synthesized by Bacillus thuringiensis against Staphylococcus aureus isolates associated to bovine mastitis. Vet. Microbiol. 138: 179-183.   DOI   ScienceOn
6 Beegle, C. C. and T. Yamamoto. 1992. History of Bacillus thuringiensis Berliner research and development. Can. Entomol. 124: 587-616.   DOI
7 Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248.   DOI   ScienceOn
8 Chehimi, S., F. Delalande S. Sable, M. R. Hajlaoui, A. Van Dorsselaer, F. Limam, and A. M. Pons. 2007. Purification and partial amino acid sequence of thuricin S, a new anti-Listeria bacteriocin from Bacillus thuringiensis. Can. J. Microbiol. 53: 284-290.   DOI   ScienceOn
9 Chen, H. and D. G. Hoover. 2003. Bacteriocins and their food applications. Comprehen. Rev. Food Sci. Food Safety 2: 82-100
10 Cherif, A., H. Ouzari, D. Daffonchio, H. Cherif, K. Ben Slama, A. Hassen, et al. 2001. Thuricin 7: A novel bacteriocin produced by Bacillus thuringiensis BMG1.7, a new strain isolated from soil. Lett. Appl. Microbiol. 32: 243-247.   DOI   ScienceOn
11 Cherif, A., S. Chehimi, F. Limem, B. M. Hansen, N. B. Hendriksen, D. Daffonchio, and A. Boudabous. 2003. Detection and characterization of the novel bacteriocin entomocin 9, and safety evaluation of its producer, Bacillus thuringiensis subsp. entomocidus HD9. J. Appl. Microbiol. 95: 990-1000.   DOI   ScienceOn
12 Cherif, A., W. Rezgui, N. Raddadi, D. Daffonchio, and A. Boudabous. 2008. Characterization and partial purification of entomocin 110, a newly identified bacteriocin from Bacillus thuringiensis subsp. entomocidus HD110. Microbiol. Res. 163: 684-692.   DOI   ScienceOn
13 Cleveland, J., T. J. Montville, I. F. Nes, and M. L. Chikindas. 2001. Bacteriocins: Safe, natural antimicrobials for food preservation. Int. J. Food Microbiol. 71: 1-20.   DOI   ScienceOn
14 Delves-Broughton, J. 1990. Nisin and its uses as food preservative. Food Tech. 44: 100-117.
15 De la Fuente-Salcido, N., M. G. Alanís-Guzmán, D. K. Bideshi, R. Salcedo-Hernández, M. Bautista-Justo, and J. E. Barboza- Corona. 2008. Enhanced synthesis and antimicrobial activities of bacteriocins produced by Mexican strains of Bacillus thuringiensis. Arch. Microbiol. 190: 633-640.   DOI   ScienceOn
16 Feitelson, J. S., J. Payne, and L. Kim. 1992. Bacillus thuringiensis: Insects and beyond. BioTechnology 10: 271-275.   DOI
17 DeVuyst, L. and E. J. Vandamme. 1994. Nisin, a lantibiotic produced by Lactococcus lactis subsp. lactis: Properties, biosynthesis, fermentation and applications, pp. 151-221. In L. De Vuyst and E. J. Vandamme (eds.). Bacteriocins of Lactic Acid Bacteria. Chapman and Hall, London.
18 Gray, E. J., K. D. Lee, A. M. Souleimanov, M. R. Di Falco, X. Zhou, A. Ly, et al. 2006. A novel bacteriocin, thuricin 17, produced by plant growth promoting rhizobacteria strain Bacillus thuringiensis NEB17: Isolation and classification. J. Appl. Microbiol. 100: 545-554.   DOI   ScienceOn
19 Favret, M. E. and A. A. Yousten. 1989. Thuricin: The bacteriocin produced by Bacillus thuringiensis. J. Invertebr. Pathol. 53: 206-216.   DOI
20 Ghanbari, M., M. Rezaei, M. Soltani, and G. Shah-Hosseini. 2009. Production of bacteriocin by a novel Bacillus sp. strain RF 140, an intestinal bacterium of Caspian Frisian Roach (Rutilus frisiikutum). Iran. J. Vet. Res. 10: 267-272.
21 Hardy, K. G. 1993. Plasmids, pp. 138-272. In K. G. Hardy (ed.). The Practical Approach Series, 2nd Ed.
22 Hyronimus, B., C. Le Marrec, and M. C. Urdaci. 1998. Coagulin, a bacteriocin-like inhibitory substance produced by Bacillus coagulans I4. J. Appl. Microbiol. 85: 42-50.   DOI   ScienceOn
23 Jack, R. W., J. R. Tagg, and B. Ray. 1995. Bacteriocins of Gram positive bacteria. Microbiol. Rev. 59: 171-200.
24 Kamoun, F., H. Mejdoub, H. Aouissaoui, J. Reinbolt, A. Hammami, and S. Jaoua. 2005. Purification, amino acid sequence and characterization of bacthuricin F4, a new bacteriocin produced by Bacillus thuringiensis. J. Appl. Microbiol. 98: 881-888.   DOI   ScienceOn
25 Klaenhammer, T. R. 1993. Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol. Rev. 12: 39-86.   DOI
26 Lee, K. D., E. J. Gray, F. Mabood, W. J. Jung, T. Charles, S. R. Clark, et al. 2009b. The class IId bacteriocin thuricin-17 increases plant growth. Planta 229: 747-755.   DOI   ScienceOn
27 Naclerio, G., E. Ricca, M. Sacco, and M. De Felice. 1993. Antimicrobial activity of a newly identified bacteriocin of Bacillus cereus. Appl. Environ. Microbiol. 59: 4313-4316.
28 Klein, C., C. Kaletta, and K. D. Entian. 1993. Biosynthesis of the lantibiotic subtilin is regulated by a histidine kinase/response regulator system. Appl. Environ. Microbiol. 59: 296-303.
29 Laemmli, U. K. 1970. Cleavage of the structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685.   DOI   ScienceOn
30 Lee, H., J. J. Churey, and R. W. Worobo. 2009a. Biosynthesis and transcriptional analysis of thurincin H, a tandem repeated bacteriocin genetic locus, produced by Bacillus thuringiensis SF361. FEMS Microbiol. Lett. 299: 205-213.   DOI   ScienceOn
31 Padilla, C., P. Brevis, O. Lobos, and E. Hubert. 1996. Bacteriocin activity of Pseudomonas sp. on enteropathogenic bacteria in an artificial aquatic system. Lett. Appl. Microbiol. 23: 371-374.   DOI   ScienceOn
32 Paik, H. D., S. S. Bae, and J. G. Pan. 1997. Identification and partial characterization of tochicin, a bacteriocin produced by Bacillus thuringiensis subsp. tochigiensis. J. Ind. Microbiol. Biotechnol. 19: 294-298.   DOI   ScienceOn
33 Ross, R. P., S. Morgan, and C. Hill. 2002. Preservation and fermentation: Past, present and future. Int. J. Food Microbiol. 79: 3-16.   DOI   ScienceOn
34 Sezen, K. and Z. Demirbag. 1999. Isolation and insecticidal activity of some bacteria from the hazelnut beetle (Balaninus nucum L.). Appl. Entomol. Zool. 34: 85-89.   DOI