Browse > Article

Characterization of Bacteriocin-Like Substances Produced by Bacillus subtilis MJP1  

Yang, Eun-Ju (Department of Food and Nutrition, Chosun University)
Chang, Hae-Choon (Department of Food and Nutrition, Chosun University)
Publication Information
Microbiology and Biotechnology Letters / v.35, no.4, 2007 , pp. 339-346 More about this Journal
Abstract
The MJP1 bacterial strain, which possesses antifungal activity, was isolated from meju and identified as Bacillus subtilis based on its morphological and biochemical properties, as well as its 16S rRNA sequence. Antimicrobial activity was found against various species of Gram-positive bacteria, yeasts, and molds, including food-spoilage microorganisms. The antifungal activity was found to be stable after heat and proteolytic enzyme treatment, and in the pH range of $6.0{\sim}10.0$. The antibacterial activity was stable in the pH range of $6.0{\sim}10.0$, but about 50% of the activity was lost after 24 hr at $30^{\circ}C$. The antibacterial compound was also inactivated by proteolytic enzyme treatment, indicating its proteinaceous nature. The apparent molecular masses of the partially purified antifungal and antibacterial compounds, as indicated by using the direct detection method in Tricine-SDS-PAGE, were approximately 2.4 kDa and 4.5 kDa, respectively. These studies suggest that B. subtilis MJP1 produces two bacteriocin-like substances with antifungal and antibacterial activities.
Keywords
Bacillus subtilis; bacteriocin-like substance; antifungal activity; antibacterial activity;
Citations & Related Records

Times Cited By SCOPUS : 8
연도 인용수 순위
1 Katz, E. and A. L. Demain. 1977. The peptide antibiotics of Bacillus: chemistry, biogenesis, and possible function. Bacteriol. Rev. 41: 449-474   PUBMED
2 Oscariz, J. C. and A. G. Pisabarro. 2001. Classification and mode of action of membrane-active bacteriocins produced by gram-positive bacteria. Int. Microbiol. 4: 13-19   PUBMED
3 Potera, C. 1994. From bacteria: a new weapon against fungal infection. Science. 265: 605   DOI   PUBMED
4 Schagger, H. and G. von Jagow. 1987. Tricine-sodium dodecyl sulfate- polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal. Biochem. 166: 368-379   DOI   ScienceOn
5 Wang, J. and D. Y. D. Fung. 1996. Alkaline-fermented foods: a review with emphasis on pidan fermentation. Crit. Rev. Microbiol. 22: 101-138   DOI
6 Kluge, B., J. Vater, J. Salnikow, and K. Eckart. 1998. Studies on the biosynthesis of surfactin, a lipopeptide antibiotic from Bacillus subtilis ATCC 21332. FEBS Lett. 231: 107-110   DOI   ScienceOn
7 Sharp, R. J., M. D. Scawen, and T. Atkinson. 1989. Fermentation and downstream processing of Bacillus, pp. 255-292. In Harwood, C. R. (ed.), Bacillus. Biotechnology handbooks, Plenum Press, New York
8 Munimbazic, C. and L. B. Bullerman. 1998. Isolation and partial characterization of antifungal metabolites of Bacillus pumilus. J. Appl. Microbiol. 84: 959-968   DOI   ScienceOn
9 Nakano, M. M. and P. Zuber. 1990. Molecular biology of antibiotic production in Bacillus. Biotechnol. 10: 223-240
10 Yokotsuka, T. 1985. Fermented protein foods in the orient, with emphasis on shoyu and miso in Japan, pp. 197-247. In Wood, B. J. B. (ed.), Microbiology of Fermented Foods. Elsevier Applied Science, London
11 Stein, T. 2005. Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol. Microbiol. 56: 845-857   DOI   ScienceOn
12 Bizani, D. and A. Brndelli. 2002. Characterization of a bacteriocin produced by a newly isolated Bacillus sp. Strain 8 A. J. Appl. Microbiol. 93: 512-519   DOI   ScienceOn
13 Johnson, B. A., H. Anker, and F. L. Meleney. 1945. Bacitracin: a new antibiotic produced by a member of the B. subtilis group. Science. 102: 376-377   DOI   ScienceOn
14 Shafer, W. M. 1997. Antibacterial peptide protocols. Methods in molecular biology. Humana, Totowa, NJ
15 Yoon, J. H., S. T. Lee, and Y. H. Park. 1996. Inter- and intraspecific phylogenetic analysis of the genus Nocardioides and related taxa based on 16S rDNA sequences. Int. J. Syst. Bacteriol. 48: 187-194
16 Klein, C, C. Kaletta, and K. D. Entian. 1993. Biosynthesis of the lantibiotic subtilin is regulated by a histidine kinase/response regulator system. Appl. Environ. Microbiol. 59: 296-303   PUBMED
17 Carbone, I. and L. M. Kohn. 1993. Ribosomal DNA sequence divergence within internal transcribed spacer 1 of the Selerotiniaccae. Mycologia. 85: 415-427   DOI
18 Maget-Dana, R. and F. Peypoux. 1994. Iturins, a special class of pore-forming lipopeptides: biological and physicochemical properties. Toxicology. 87: 151-174   DOI   ScienceOn
19 Barefoot, S. F. and C. G Netlles. 1993. Antibiotics revisited: bacteriocins produced by dairy stater cultures. J. Dairy Sci. 76: 2366-2379   DOI   PUBMED
20 Jack, R. W., J. R. Tagg, and B. Ray. 1995. Bacteriocin of gram-positive bacteria. Microbiol. Rev. 59: 171-200   PUBMED
21 Odunfa, S. A. and G. F. Oyeyiola. 1985. Microbiological study of the fermentation of ugba, a Nigerian indigenous fermented food flavor. J. Plant Foods. 6: 155-163   DOI
22 Hyronimus, B., C. Le Marrec, and M. C. Urdaci. 1998. Coagulin, a bacteriocin-like inhibitory substance produced by Bacillus coagulans 14. J. Appl. Microbiol. 85: 42-50   DOI   ScienceOn
23 White, T. J., T. D. Bruns, S. B. Lee, and J. W. Taylor. 1990. Amplification and direct sequencing of fungal ribosomal DNA for phylogenetics, pp. 315-322. In Innis, M. A., D. H. Gelfand. J. J. Sninsky, and T. J. White. (eds.), PCR protocols: a guide to the methods and applications. Academic Press, Inc., New York
24 Zuber, P., M. M. Nakano, and M. A. Marahiel. 1993. Peptide antibiotics, pp. 896-916. In Sonenshein, A. C., J. A. Hoch, and R. Losick. (eds.), Bacillus subtilis and other grampositive bacteria: biochemistry, physiology and molecular genetics. American Society for Microbiology, Washington, D.C., U.S.A
25 Thompson, J. D., D. G. Higgins, and T. J. Gibson. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680   DOI
26 Vanittanakom, N., W. Loettler, U. Koch, and G. Jung. 1986. Fengycin-a novel antifungal lipopeptide antibiotic produced by Bacillus subtilis F-29-3. J. Antibiot. 39: 881-901
27 Sun, L., Z. Lu, X. Bie, F. Lu, and S. Yang. 2006. Isolation and characterization of a co-producer of fengycins and surfactins, endophytic Bacillus amyloliquefaciens ES-2, from Scutellaria baicalensis Georgi. World J. Microbiol. Biotechnol. 22: 1259-1266   DOI
28 Klaenhammer, T. R. 1988. Bacteriocins of lactic acid bacteria. Biochimie. 70: 337-349   DOI   ScienceOn
29 Lebbadi, M., A. Galvez, M. Maqueda, M. Martinez-Bueno, and E. Valdivia. 1994. Fungicin M4: a narrow spectrum peptide antibiotic from Bacillus licheniformis M-4. J. Appl. Bacteriol. 77: 49-53   DOI   PUBMED
30 Tagg, G. R., A. S. Dajani, and L. W. Wannamarker. 1976. Bacteriocin of Gram-positive bacteria. Bacteriol. Rev. 40: 772-756
31 Klaenhammer, T. R. 1993. Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol. Rev. 12: 39-85   PUBMED
32 Kim, S. I., I. C. Kim, and H. C. Chang. 1999. Isolation and identification of antimicrobial agent producing microorganisms and sensitive strain from soil. J. Kor. Soc. Food Sci. Nutr. 28: 526-533
33 Bhunia, A. K., M. C. Johnson, and B. Ray. 1987. Direct detection of an antimicrobial peptide of Pediococcus acidilactici in sodium dodecyl-polyacrylamide gel electrophoresis. J. Indust. Microbiol. 2: 319-322   DOI