• Title/Summary/Keyword: bacteriocin, synergistic effect

Search Result 8, Processing Time 0.025 seconds

Synergistic Inhibition by Bacteriocin and Bacteriophage against Staphylococcus aureus

  • Kim, Seon-Gyu;Lee, Young-Duck;Park, Jong-Hyun;Moon, Gi-Seong
    • Food Science of Animal Resources
    • /
    • v.39 no.6
    • /
    • pp.1015-1020
    • /
    • 2019
  • Staphylococcus aureus is a representative pathogenic bacterium carefully controlled in the dairy industry because it causes bovine mastitis and thus, can enter the dairy chain. Furthermore, the emergence of multi-drug resistant S. aureus is a big problem. We previously isolated a Lactococcus lactis strain producing a bacteriocin that exhibited strong antimicrobial activity against S. aureus. In this study, we investigated the synergistic inhibition of S. aureus by the bacteriocin and a bacteriophage (SAP84) which is specific to the organism. The bacteriocin (12.5-100 AU/mL) inhibited the growth of S. aureus KCTC 3881 in a dose-dependent manner, as did the bacteriophage SAP84 (0.001-1 MOI; multiplicity of infection). Co-treatment with the bacteriocin (100 AU/mL) and the bacteriophage (0.1 MOI) significantly inhibited the growth of S. aureus compared to each treatment alone (bacteriocin or bacteriophage), indicating the two components showed synergistic inhibition of S. aureus. Therefore, the bacteriocin and bacteriophage combination can be used as a good strategy for controlling pathogenic bacteria.

Synergistic Effects of Bacteriocin-Producing Pediococcus acidilactici K10 and Organic Acids on Inhibiting Escherichia coli O157:H7 and Applications in Ground Beef

  • Moon, Gi-Seong;Kim, Wang-June;Kim, Myung-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.6
    • /
    • pp.936-942
    • /
    • 2002
  • When used in combination with organic acids, Pediococcus acidilactici K10 or its bacteriocin was effective in inhibiting Escherichia coli O157:H7 in vitro and in situ. P. acidilactici K10, a strain of bacteriocin-producing lactic acid bacteria (LAB), was previously isolated from kimchi in our laboratory, and the molecular weight of its bacteriocin was estimated to be around 4,500 Da by SDS-PAGE. Initially, P. acidilactici K10 and its bacteriocin could not inhibit E. coli O157:H7, when used alone. However, when they were used together with organic acids such as acetic, lactic, and succinic acids, they greatly inhibited E. coli O157:H7 in vitro. Based on these in vitro results, a real sample test with ground beef was conducted at $4^{\circ}C$ with acetic acid (0.25%) or lactic acid (0.35%) alone, and then in combination with P. acidilactici K10 (10^5 CFU/g of sample). Combined treatment of P. acidilactici K10 with lactic acid showed the most inhibitory effect: a 2.8-$log_{10}$-unit reduction of E. coli O157:H7 in ground beef during storage at $4^{\circ}C$. This result suggests that the combination of bacteriocin-producing P. acidilactici K10 and organic acids has great potential as a food biopreservative by inhibiting the growth of E. coli O157:H7.

Synergistic Effect of Physico-chemical Treatment and Bacteriocin Produced by Enterococcus faecium MJ-14 (Enterococcus faecium MJ-14가 생산하는 박테리오신과 물리화학적 처리의 상승효과)

  • Lim Sung-Mee
    • Journal of Food Hygiene and Safety
    • /
    • v.20 no.4
    • /
    • pp.217-224
    • /
    • 2005
  • When L. monocytogenes ($10^{5}CFU/mL$) at exponential phase cells were heated for 5 min at $65^{\circ}C$ in the presence of the bacteriocin (30 BU/mL) produced by E. faecium MJ-14, the number of viable cells was markedly reduced at p < 0.05. The bactericidal effect of bacteriocin showed synergism with combination ot organic acids (citric acid or acetic acid) or chemical preservatives (sodium benzoate, sodium lactate, sodium nitrate or potassium nitrate). For example, the number of viable cells was reduced by 4.8 log units under combination of the bacteriocin (30 BU/mL) and sodium nitrate ($100{\mu}g/mL$), while it was reduced by 1.1 log unit only under single treatment of the bacteriocin after 12 k at $37^{\circ}C$. The addition of the bacteriocin (300 BU/mL) into skim milk inoculated with L. monocytogenes ($10^{5}$CFU/mL) reduced the cells by 1.5 log unit, in case of the cell suspension stored at $4^{\circ}C$ for 24 hr. Moreover, L. monocytogenes was reduced by 2 log unit when stored at $-20^{\circ}C$ for 7 days in gound pork added with 300 BU/mL of 린e bacteriocin.

Isolation, Identification, and Characterization of a Bacteriocin-Producing Enterococcus sp. from Kimchi and Its Application to Kimchi Fermentation

  • Moon, Gi-Seong;Kang, Chang-Hoon;Pyun, Yu-Ryang;Kim, Wang-June
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.5
    • /
    • pp.924-931
    • /
    • 2004
  • A bacteriocin-producing lactic acid bacterium, which strongly inhibited the Lactobacillus plantarum recognized as an important acid spoilage microorganism in kimchi fermentation, was isolated from kimchi. From morphological, physiological, sugar fermentation, biochemical tests, and l6S rDNA sequencing results, the isolate was identified as an Enterococcus sp. and designated as Enterococcus sp. K25. The bacteriocin produced by Enterococcus sp. K25 inhibited several Gram-positive bacteria, including Lb. plantarum, whereas it did not inhibit Gram-negative bacteria and yeasts. Optimal temperature and pH for the bacteriocin production were $25^\circ{C}$ and 5.5, respectively. Enterococcus sp. K25 was applied to kimchi manufacturing alone and together with other preservatives (i.e., chitosan and fumaric acid). In addition, growth of lactic acid bacteria, pH, and titratable acidity (TA) were measured during aging at $5^\circ{C}$ and $10^\circ{C}$. Inoculation of Enterococcus sp. K25 together with fumaric acid showed the most synergistic effect on extension of kimchi shelf-life. Compared to control (no addition), the treatment prolonged the kimchi shelf-life up to 6 days, whereupon the eight-point TA value recognized as the edible limit was reached.

Synergistic Effect of Citric Acid and Pediocin K1, a Bacteriocin Produced by Pediococcus sp. K1, on Inhibition of Listeria monocytogenes

  • KIM, SOO YEON;YOUNG MIN LEE;SUN YOUNG LEE;YEON SOOK LEE;JEONG HWAN KIM;CHEOL AHN;BYUNG CHEOL KANG;GEUN-EOG JI
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.5
    • /
    • pp.831-837
    • /
    • 2001
  • Pediocin K1, a bacteriocin produced by Pediococcus sp. K1 isolated from Korean traditional fermented flatfish, inhibited certain strains of Lactobacillus, Streptococcus, and Listeria monocytogenes. Pediocin K1 was found to be stable at $90^{\circ}C$ for 30 min. Among the organisms tested, Listeria monocytogenes was the most sensitive to pediocin K1 and was completely killed when the initial inoculum size of L.monocytogenes cells was equal to or less than $10^3 CFU/ml$. The degree of inibition of Listeria monocytogenes by pediocin K1 increased 10-fold on the addition of citric acid ($0.2\%$) to the medium, thereby showing the synergistic effect of citric acid. Listeria monocytogenes cells resistant to pediocin K1 appeared at a frequency of about $10^-4$/cells. Once developed after exposure to pediocin K1, the resistant phenotype still persisted in the absence of pediocin K1 in successive cultures. This infers that resistance may be attributable to genetic change(s) in the resistant cells.

  • PDF

Effect of supplementation of yeast with bacteriocin and Lactobacillus culture on growth performance, cecal fermentation, microbiota composition, and blood characteristics in broiler chickens

  • Chen, C.Y.;Chen, S.W.;Wang, H.T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.2
    • /
    • pp.211-220
    • /
    • 2017
  • Objective: The aim of the present study was to investigate the effect of yeast with bacteriocin and Lactobacillus cultures (mixture of Lactobacillus agilis BCRC 10436 and Lactobacillus reuteri BCRC 17476) supplements, alone or in combination, on broiler chicken performance. Methods: A total of 300, 1-d-old healthy broiler chickens were randomly divided into five treatment groups: i) basal diet (control), ii) basal diet+0.25% yeast (Saccharomyces cerevisiae) (YC), iii) basal diet+0.25% yeast with bacteriocin (BA), iv) basal diet+Lactobacillus cultures (LAB), and v) basal diet +0.25% yeast with bacteriocin+Lactobacillus cultures (BA+LAB). Growth performance, cecal microbiota, cecal fermentation products, and blood biochemistry parameters were determined when chickens were 21 and 35 d old. Results: The supplementation of YC, BA, and BA+LAB resulted in a significantly better feed conversion rate (FCR) than that of the control group during 1 to 21 d (p<0.05). The LAB supplementation had a significant effect on the presence of Lactobacillus in the ceca at 35 d. None of the supplements had an effect on relative numbers of L. agilis and L. reuter at 21 d, but the BA supplementation resulted in the decrease of both Lactobacillus strains at 35 d. The BA+LAB supplementation resulted in higher short chain fatty acid (SCFA) in the ceca, but LAB supplementation significantly decreased the SCFA at 35 d (p<0.05). All treatments tended to decrease ammonia concentration in the ceca at 21 d, especially in the LAB treatment group. The BA supplementation alone decreased the triacylglycerol (TG) concentration significantly at 21 d (p<0.05), but the synergistic effect of BA and LAB supplementation was required to reduce the TG concentration at 35 d. The YC supplementation tended to increase the plasma cholesterol at 21 d and 35 d. However, the BA supplementation significantly decreased the cholesterol and low density lipoprotein cholesterol level at 35 d. In conclusion, the BA+LAB supplementation was beneficial to body weight gain and FCR of broiler chickens. Conclusion: The effect of BA and LAB supplementation may be a result of the growth of lactic acid bacteria enhancement and physiological characterization of bacteriocin, and it suggests that the BA and LAB supplementation level or Lactobacillus strain selection should be integrated in future supplementation designs.

Combined Effects of Bacteriocin of Enterococcus faecalis MJ-213 and Organic Acid on Listeria monocytogenes Inactivation (Listeria monocytogenes에 대한 Enterococcus faecalis MJ-213이 생산한 박테리오신과 유기산 혼합 처리의 항균활성)

  • Lim, Sung-Mee
    • Korean Journal of Microbiology
    • /
    • v.45 no.1
    • /
    • pp.41-47
    • /
    • 2009
  • In this study, the effect of combining oragnic acid and bacteriocin of E. faecalis MJ-213 isolated from Meju against L. monocytogenes KCTC 3569 growth in BHI broth and ground pork was investigated. In combination, the effects of 256 BU/ml bacteriocin and 1.5% acetic acid, citric acid or lactic acid were synergistic and effective than those compounds alone in controlling the viable cell counts of L. moncytogenes. The addition of increasing concentrations of the bacteriocin or organic acids led to a marked decrease in the number of L. monocytogenes. The combining treatment of the bacteriocin (256 BU/ml) and organic acid (1.5%) in ground pork inoculated with L. monocytogenes (5 log CFU/ml) resulted in 1 to 2 log CFU/ml reduction of cell counts during storage at $4^{\circ}C$ for 60 h. Also, the bacteriocin of E. faecalis MJ-213 was relatively stable at $100^{\circ}C$ for 20 min.

Synergistic Effect of Combined Treatment of Bacteriocin Produced by Enterococcus faecalis MJ-231 and Potassium Sorbate on Growth of Food-Borne Pathogenic Bacteria (식중독균 생육에 대한 Enterococcus faecalis MJ-231의 박테리오신과 소르빈산칼륨의 혼합처리 효과)

  • Lim, Sung-Mee
    • Korean Journal of Microbiology
    • /
    • v.46 no.2
    • /
    • pp.192-199
    • /
    • 2010
  • The alone and combined effects of bacteriocin produced from Enterococcus faecalis MJ-213 and potassium sorbate against the food-borne pathogenic bacteria were studied. Bacteriocin minimal inhibitory concentration (MIC) values for Staphylococcus aureus ATCC 6538 and Salmonella enteritidis ATCC 13076 were 50 and 100 ${\mu}g$/ml, respectively. Bacteriocin (100 ${\mu}g$/ml) alone was active against S. aureus and S. enteritidis, but it was lower in antimicrobial effectiveness than the combination of bacteriocin (100 ${\mu}g$/ml) with potassium sorbate (100 ${\mu}g$/ml), which reduced initial counts (6 log cycle) of S. aureus and S. enteritidis by 1 and 3 log cycle, respectively. The bactericidal activity of bacteriocin of E. faecalis MJ-213 heated at $100^{\circ}C$ for 30 min or $121^{\circ}C$ for 15 min was markedly decreased as compared with the control. Moreover, the activity of bacteriocin was completely abolished by pepsin or protease II, but not affected by ${\alpha}$-amylase or lipase. The activity of bacteriocin adjusted to pH 6.0-8.0 showed almost the same inhibition ratio compared with the bacteriocin unadjusted pH, and though the inhibition ratio against pathogenic bacteria was reduced than the control, the bacteriocin was stable at pH 4.0 or 10.0, relatively. Furthermore, the combined treatment of bacteriocin and potassium sorbate than the alone treatment of bacteriocin significantly decreased (p<0.05) the viable cell counts of S. aureus or S. enteritidis inoculated on grind beef during storage at $4^{\circ}C$.