Browse > Article

Isolation, Identification, and Characterization of a Bacteriocin-Producing Enterococcus sp. from Kimchi and Its Application to Kimchi Fermentation  

Moon, Gi-Seong (Food Safety Team, Korea Food Research Institute, Department of Biotechnology, Yonsei University)
Kang, Chang-Hoon (Lotte R &D Center)
Pyun, Yu-Ryang (Department of Biotechnology, Yonsei University)
Kim, Wang-June (Food Safety Team, Korea Food Research Institute)
Publication Information
Journal of Microbiology and Biotechnology / v.14, no.5, 2004 , pp. 924-931 More about this Journal
Abstract
A bacteriocin-producing lactic acid bacterium, which strongly inhibited the Lactobacillus plantarum recognized as an important acid spoilage microorganism in kimchi fermentation, was isolated from kimchi. From morphological, physiological, sugar fermentation, biochemical tests, and l6S rDNA sequencing results, the isolate was identified as an Enterococcus sp. and designated as Enterococcus sp. K25. The bacteriocin produced by Enterococcus sp. K25 inhibited several Gram-positive bacteria, including Lb. plantarum, whereas it did not inhibit Gram-negative bacteria and yeasts. Optimal temperature and pH for the bacteriocin production were $25^\circ{C}$ and 5.5, respectively. Enterococcus sp. K25 was applied to kimchi manufacturing alone and together with other preservatives (i.e., chitosan and fumaric acid). In addition, growth of lactic acid bacteria, pH, and titratable acidity (TA) were measured during aging at $5^\circ{C}$ and $10^\circ{C}$. Inoculation of Enterococcus sp. K25 together with fumaric acid showed the most synergistic effect on extension of kimchi shelf-life. Compared to control (no addition), the treatment prolonged the kimchi shelf-life up to 6 days, whereupon the eight-point TA value recognized as the edible limit was reached.
Keywords
Bacteriocin; Enterococcus sp.; kimchi; shelf-life;
Citations & Related Records

Times Cited By Web Of Science : 14  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Ampe, E, N. B. Omar, C. Moizan, C. Wacher, and J. P. Guyot. 1999. Polyphasic study of the spatial distribution of microorganisms in Mexican pozol, a fermented maize dough, demonstrates the need for cultivation-independent methods to investigate traditional fermentations. Appl. Environ. Microbiol. 65: 5464- 5473.
2 Aymerich, T., H. Holo, L. S. Havarstein, M. Hugas, M. Garriga, and I. E Nes. 1996. Biochemical and genetic characterization of enterocin A from Enterococcus faecium, a new antilisterial bactriocin in the pediocin family of bacteriocins. Appl. Environ. Microbiol. 62: 1676- 1682.
3 Kim, Y. C., E. Y. Jung, E. H. Kim, D. H. Jung, S. H. Jung, D. H. Yi, T. J. Kwon, and S. M. Kang. 1998. Properties of acid tolerance of acid-resistant mutant Leuconostoc mesenteroides which was improved as kimchi starter. Kor. J. Appl. Microbiol. Biotechnol. 26: 102- 110.
4 Kim, Y. C., E. Y Jung, H. J. Kim, D. H. Jung, S. G. Hong, T. J. Kwon, and S. M. Kang. 1999. Improvement of kimchi fermentation by using acid-tolerant mutant of Leuconostoc mesenteroides and aromatic yeast Saccharomyces fermentati as starters. J. Microbiol. Biotechnol. 9: 22- 31.
5 Mah, J. H., K. S. Kim, J. H. Park, M. W. Byun, Y B. Kim, and H. J. Hwang. 2001. Bacteriocin with a broad antimicrobial spectrum, produced by Bacillus sp. isolated from kimchi. J. Microbiol. Biotechnol. 11: 577-584.
6 Ray, B. and M. Daeschel. 1992. Food Biopreservatives of Microbial Origin, pp. 64-70. CRC Press, Boca Raton, Florida, U.S.A.
7 Son, Y M., K. O. Kim, D. W. Jeon, and K. H. Kyung. 1996. The effect of low molecular weight chitosan with and without other preservatives on the characteristics of kimchi during fermentation. Kor. J. Food Sci. Technol. 28: 888-896.
8 Kang, S. M., W. S. Yang, Y C. Kim, E. Y Joung, and Y G. Han. 1995. Strain improvement of Leuconostoc mesenteroides for kimchi fermentation and effect of starter. Kor. J. Appl. Microbiol. Biotechnol. 23: 461-471.
9 Cintas, L. M., J. M. Rodriguez, M. F. Fernandez, K. Sletten, I. F. Nes, P. E. Hernandez, and H. Holo. 1995. Isolation and characterization of pediocin L50, a new bacteriocin from Pediococcus acidilactici with a broad inhibitory spectrum. Appl. Environ. Microbiol. 61: 2643- 2648.
10 Mheen, T. I. and T. W. Kwon. 1984. Effect of temperature and salt concentration on kimchi fermentation. Kor. J. Food Sci. Technol. 16: 443- 450.
11 Cha, D. S. and D. M. Ha. 1996. Isolation of Leuconostoc mesenteroides subsp. mesenteroides DU-0608 with antibacterial activity from kimchi and characterization of its bacteriocin. J. Microbiol. Biotechnol. 6: 270- 277.
12 Lee, S. H. and W. J. Choi. 1998. Effect of medicinal herbs extracts on the growth of lactic acid bacteria isolated from kimchi and fermentation of kimchi. Kor. J. Food Sci. Technol. 30: 624- 629.
13 Cho, M. H. and Y H. Park. 1998. Inhibition of lactic acid bacteria in kimchi fermentation by nisin. J. Microbiol. Biotechnol. 8: 547- 552.
14 Holt, J. G., N. R. Krieg, P. H. A. Sneath, J. T. Staley, and S. T. Williams. 1994. Bergey's Manual of Determinative Bacteriology. 9th Ed. Williams and Wilkins, Baltimore, U.S.A.
15 Kwon, D. Y, M. Koo, C. R. Ryoo, C. H. Kang, K. H. Min, and W. J. Kim. 2002. Bacteriocin produced by Pediococcus sp. in kimchi and its characteristics. J. Microbiol. Biotechnol. 12: 96- 105.
16 Lee, G. H., G. S. Moon, J. Y An, H. J. Lee, H. C. Chang, D. K. Chung, J. H. Lee, and J. H. Kim. 2002. Isolation of a nisin-producing Lactococcus lactis strain from kimchi and characterization of its nisZ gene. J. Microbiol. Biotechnol. 12: 389- 397.
17 Daeschel, M. A. 1989. Antimicrobial substances from lactic acid bacteria for use as food preservatives. Food Technol. 43: 164-167.
18 Innis, M. A., D. H. Gelfand, and J. J. Sninsky. 1995. rce Strategies, pp. 249- 276. Academic Press, San Diego, California, U.S.A.
19 Choi, Y O. and C. Ahn. 1997. Plasmid-associated bacteriocin production by Leuconostoc sp. LAB 145-3A isolated from kimchi. J. Microbiol. Biotechnol. 7: 409- 416.
20 Choi, H. J., C. I. Cheigh, S. B. Kim, J. C. Lee, D. W. Lee, S. W. Choi, J. M. Park, and Y R. Pyun. 2002. Weissella kimchii sp. nov., a novel lactic acid bacterium from kimchi. Int. J. Syst. Evol. Microbiol. 52: 507-511.
21 Kim, W. J. 1993. Bacteriocins of lactic acid bacteria: Their potentials as food biopreservative. Food Rev. Int. 9: 299-313.
22 Lee, S. H. and O. K. Jo. 1998. Effect of Lithospermum erythrohiron, Glycyrrhiza uralensis and dipping of chitosan on shelf-life of kimchi. Kor. J. Food Sci. Technol. 30: 1367-1372.
23 Hahn, Y S., J. Y Oh, and Y J. Kim. 2002. Effect of preservatives and heat treatment on the storage of low-salt kimchi. Kor. J. Food Sci. Technol. 34: 565- 569.
24 Kim, K. O., H. A. Moon, and D. W. Jeon. 1995. The effect of low molecular weight chitosans on the characteristics of kimchi during fermentation. Kor. J. Food Sci. Technol. 27: 420-427.
25 Moon, G. S., W. J. Kim, and M. Kim. 2002. Synergistic effects of bacteriocin-producing Pediococcus acidilactici KIO and organic acids on inhibiting Escherichia coli O157:H7 and applications in ground beef. J. Microbiol. Biotechnol. 12: 936- 942.
26 An, D. J., K. Lew, and K. P. Lee. 1999. Effects of adipic acid and storage temperature on extending the shelf life of kimchi. Food Sci. Biotechnol. 8: 78- 82.
27 Kim, W. J. 1996. Screening of bacteriocinogenic lactic acid bacteria and their antagonistic effects in sausage fermentation. J. Microbiol. Biotechnol. 6: 461- 467.
28 Choi, J. Y, M. Kim, and J. H. Lee. 2002. Reevaluation of the change of Leuconostoc species and Lactobacillus plantarum by PCR during kimchi fermentation, J. Microbiol. Biotechnol. 12: 166-171.
29 Kim, Y. C., E. Y. Jung, E. H. Kim, D. H. Jung, T. B. Choe, T. J. Kwon, and S. M. Kang. 1998. Acid tolerance of the acid-resistant mutant of Leuconostoc paramesenteroides improved for kimchi starter. Kor. J. Appl. Microbiol. Biotechnol. 26: 275- 282.
30 Marugg, J. D., C. F. Gonzalez, B. S. Kunka, A. M. Ledeboer, M. J. Pucci, M. Y Toonen, S. A. Walker, L. C. M. Zoetmulder, and P. A. Vandenbergh. 1992. Cloning, expression, and nucleotide sequence of genes involved in production of pediocin PA-1, a bacteriocin from Pediococcus acidilactici PAC1.0. Appl. Environ. Microbiol. 58: 2360- 2367.
31 Klaenhammer, T. R. 1993. Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol. Rev. 12: 39- 86.   PUBMED
32 Moon, G. S., J. J. Jeong, G. E. Ji, J. S. Kim, and J. H. Kim. 2000. Characterization of a bacteriocin produced by Enterococcus sp. T7 isolated from humans. J. Microbiol. Biotechnol. 10: 507-513.
33 Ross, R. P., M. Galvin, O. McAuliffe, S. M. Morgan, M. P. Ryan, D. P. Twomey, W. J. Meaney, and C. Hill. 1999. Developing applications for lactococcal bacteriocins. Antonie van Leeuwenhoek 76: 337- 346.
34 Sabia, C, G. Manicardi, P. Messi, S. de Niederhausern, and M. Bondi. 2002. Enterocin 416K1, an antilisterial bacteriocin produced by Enterococcus casseliflavus IM 416K1 isolated from Italian sausages. Int. J. Food Microbiol. 75: 163- 170.
35 Choi, S. Y, I. S. Lee, J. Y. Yoo, K. S. Chung, and Y J. Koo. 1990. Inhibitory effect of nisin upon kimchi fermentation. Kor. J. Appl. Microbiol. Biotechnol. 18: 620- 623.