Browse > Article

Synergistic Effect of Combined Treatment of Bacteriocin Produced by Enterococcus faecalis MJ-231 and Potassium Sorbate on Growth of Food-Borne Pathogenic Bacteria  

Lim, Sung-Mee (Department of Food Science and Technology, Tongmyong University)
Publication Information
Korean Journal of Microbiology / v.46, no.2, 2010 , pp. 192-199 More about this Journal
Abstract
The alone and combined effects of bacteriocin produced from Enterococcus faecalis MJ-213 and potassium sorbate against the food-borne pathogenic bacteria were studied. Bacteriocin minimal inhibitory concentration (MIC) values for Staphylococcus aureus ATCC 6538 and Salmonella enteritidis ATCC 13076 were 50 and 100 ${\mu}g$/ml, respectively. Bacteriocin (100 ${\mu}g$/ml) alone was active against S. aureus and S. enteritidis, but it was lower in antimicrobial effectiveness than the combination of bacteriocin (100 ${\mu}g$/ml) with potassium sorbate (100 ${\mu}g$/ml), which reduced initial counts (6 log cycle) of S. aureus and S. enteritidis by 1 and 3 log cycle, respectively. The bactericidal activity of bacteriocin of E. faecalis MJ-213 heated at $100^{\circ}C$ for 30 min or $121^{\circ}C$ for 15 min was markedly decreased as compared with the control. Moreover, the activity of bacteriocin was completely abolished by pepsin or protease II, but not affected by ${\alpha}$-amylase or lipase. The activity of bacteriocin adjusted to pH 6.0-8.0 showed almost the same inhibition ratio compared with the bacteriocin unadjusted pH, and though the inhibition ratio against pathogenic bacteria was reduced than the control, the bacteriocin was stable at pH 4.0 or 10.0, relatively. Furthermore, the combined treatment of bacteriocin and potassium sorbate than the alone treatment of bacteriocin significantly decreased (p<0.05) the viable cell counts of S. aureus or S. enteritidis inoculated on grind beef during storage at $4^{\circ}C$.
Keywords
antibacterial activity; bacteriocin; E. faecalis; food-borne microorganism; potassium sorbate;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 Theppangna, W., T. Murase, N. Tokumaru, H. Chikumi, E. Shimizu, and K. Otsuki. 2007. Screening of the enterocin genes and antimicrobial activity against pathogenic bacteria in Enterococcus strains obtained from different origins. J. Vet. Med. Sci. 69, 1235-1239.   DOI   ScienceOn
2 Vanne, L., M. Karwoski, S. karppinen, and A.M. Sjoberg. 1996. HACCP-based food quality control and rapid detection methods for microorganisms. Food Control 7, 263-276.   DOI   ScienceOn
3 Chawla, S.P., R. Chander, and A. Sharma. 2006. Safe and shelfstable natural casing using hurdle technology. Food Control 17, 127-131.   DOI   ScienceOn
4 Samelis, J., G.K. Bedie, J.N. Sofos, K.E. Belk, J.A. Scanga, and G.C. Smith. 2005. Combinations of nisin with organic acids or salts to control Listeria monocytogenes on sliced pork bologna stored at $4{^{\circ}C}$ in vacuum packages. Lebensm. Wiss. Technol. 38, 21-28.   DOI   ScienceOn
5 Mead, P.S., L. Slutsker, V. Dietz, L.F. McCaig, J.S. Bresee, and C. Shapiro. 1999. Food-related illness and death in the United States. Emerg. Infect. Dis. 5, 607-625.   DOI
6 Lucas, R., M.J. Grande, H. Abriouel, M. Maqueda, N.B. Omar, E. Valdivia, M. Martinez-Canamero, and A. Galvez. 2006. Application of the broad-spectrum bacteriocin enterocin AS-48 to inhibit Bacillus coagulans in canned fruit and vegetable foods. Food Chem. Toxicol. 44, 1774-1781.   DOI   ScienceOn
7 Martinez-Bueno, M., A. Galvez, E. Valdivia, and M. Maqueda. 1990. A transferable plasmid associated with AS-48 production in Enteococcus faecalis. J. Bacteriol. 172, 2817-2818.   DOI
8 McCabe-Sellers, B.J. and S.E. Beattle. 2004. Food safety: emerging trends in foodborne illness surveillance and prevention. J. Am. Diet Assoc. 104, 1708-1717.   DOI   ScienceOn
9 Meng, J. and M.P. Doyle. 2002. Introduction. Microbiological food safety. Microb. Infect. 4, 395-397.   DOI   ScienceOn
10 Jo, S.H., H.J. Kim, E.J. Choi, and S.D. Ha. 2009. Trends analysis of food-borne outbreaks in United States of America, Japan and Korea. Safe Food 4, 3-14.   과학기술학회마을
11 Anthony, T., T. Rajesh, N. Kayalvizhi, and P. Gunasekaran. 2009. Influence of medium components and fermentation conditions on the production of bacteriocin(s) by Bacillus licheniformis AnBa9. Biores. Technol. 100, 872-877.   DOI   ScienceOn
12 Aasen, I.M., S. markussen, T. Moretro, T. Katla, L. Axelsson, and K. Naterstad. 2003. Interactions of the bacteriocins sakacin P and nisin with food constituents. Int. J. Food Microbiol. 87, 35-43.   DOI
13 Ahmad, C., C. Natascha, C. Haiqin, Z. Jianxin, T. Jian, Z. Hao, and C. Wei. 2010. Bifidin I-A new bacteriocin produced by Bifidobacterium infantis BCRC 14602: purification and partial amino acid sequence. Food Control 21, 746-753.   DOI   ScienceOn
14 Ananou, S., A. Banos, M. Maqueda, M. Martinez-Bueno, A. Galvez, and E. Valdivia. 2010. Effect of combined physicochemical treatments based on enterocin AS-48 on the control of Listeria monocytogenes and Staphylococcus aureus in a model cooked ham. Food Control 21, 478-486.   DOI   ScienceOn
15 Cleveland, J., T.J. Montville, I.F. Nes, and M.L. Chikindas. 2001. Bacteriocins: safe, natural antimicrobials for food preservation. Int. J. Food Microbiol. 71, 1-20.   DOI   ScienceOn
16 Walker, R. 1990. Nitrates, nitrites and N-nitroso compounds: a review of the occurrence in food and diet and the toxicological implications. Food Addit. Contam. 7, 717-768.   DOI   ScienceOn
17 Yoon, M.Y., Y.J. Kim, and H.J. Hwang. 2008. Properties and safety aspects of Enterococcus faecium strains isolated from Chungkukjang, a fermenated soy product. LWT. 41, 925-933.   DOI   ScienceOn
18 Zapico, P., M. de Paz, M. Medina, and M. Nunez. 1999. The effect of homogenization of whole milk, skim milk and milk fat on nisin activity against Listeria innocua. Int. J. Food Microbiol. 46, 151-157.   DOI   ScienceOn
19 Valenzuela, A.S., N. Omar, H. Abriouel, R.L. Lopez, K. Veljovic, M.M. Canamero, M.K.L. Topisirovic, and A. Galvez. 2009. Virulence factors, antibiotic resistance, and bacteriocins in enterococci from artisan foods of animal origin. Food Control 20, 381-385.   DOI   ScienceOn
20 Van der Merwe, I.R., R. Bauer, T.J. Britz, and L.M.T. Dicks. 2004. Characterization of thoeniicin 447, a bacteriocin isolated from Propionibacterium thoenii strain 447. Int. J. Food Microbiol. 92, 153-160.   DOI   ScienceOn
21 Molinos, A.C., H. Abriouel, R.L. Lopez, N.B. Omar, E. Valdivia, and A. Galvez. 2009. Enhanced bactericidial activity of enterocin AS-48 in combination with essential oils, natural bioactive compounds and chemical preservatives against Listeria monocytogenes in ready-to-eat salad. Food Chem. Toxicol. 47, 2216-2223.   DOI   ScienceOn
22 Moon, G.S., J.J. Jeong, G.E. Ji, J.S. Kim, and J.H. Kim. 2000. Chacracterization of a bacteriocin produced by Enterococcus sp. T7 isolated from humans. J. Microbiol. Biotechnol. 10, 507-513.
23 Ku, J.Y., S.J. Choi, S.Y. Kim, and B.S. Noh. 2000. Inactivation of ascorbate oxidase by hurdle technology with heat, pH and ultrasound. Food Sci. Biotechnol. 9, 372-377.
24 Jo, S.B., Y.U. Lee, and J.H. Kim. 1998. A study on synergistic effect of chitosan and sorbic acid on growth inhibition of Escherichia coli O157:H7 and Staphylococcus aureus. J. Food. Hyg. Safety 13, 112-120.
25 Kang, J.H. and M.S. Lee. 2005. Characterization of a bacteriocin produced by Enterococcus faecium GM-1 isolated from an infant. J. Appl. Microbiol. 98, 1168-1176.
26 Kleter, G.A. and H.J.P. Marvin. 2009. Indicators of emerging hazards and risks to food safety. Food Chem. Toxicol. 47, 1022-1039.   DOI   ScienceOn
27 Lazdunski, C.J. 1988. Pore-forming colicins: synthesis, extracellular release, mode of action, immunity. Biochimie 70, 1291-1296.   DOI   ScienceOn
28 Lee, N.K., J.Y. Lee, H.G. Kwak, and H.D. Paik. 2008. Perspectives for the industrial use of bacteriocin in dairy and meat industry. Kor. J. Food Sci. Ani. Resour. 28, 1-8.   과학기술학회마을   DOI
29 Leistner, L. 2000. Basic aspects of food preservation by hurdle technology. Int. J. Food Microbiol. 55, 181-186.   DOI   ScienceOn
30 Gomes, B.C., C.T. Esteves, I.C.V. Palazzo, A.L.C. Darini, G.E. Felis, L.A. Sechi, B.D.G.M. Franco, and E.C.P. De Martinis. 2008. Prevalence and characterization of Enterococcus spp. isolated from Brazilian foods. Food Microbiol. 25, 668-675.   DOI   ScienceOn
31 Piper, C., L.A. Draper, P.D. Cotter, R.P. Ross, and C. Hill. 2009. A comparison of the activities of lacticin 3147 and nisin against drug-resistant Staphylococcus aureus and Enterococcus species. J. Antimicrob. Chemother. 64, 546-551.   DOI   ScienceOn
32 Munoz, A., S. Ananou, A. Galvez, M. Martinez-Bueno, A. Rodriguez, M. Maqueda, and E. Valdivia. 2007. Inhibition of Staphylococcus aureus in dairy products by enterocin AS-48 produced in situ and ex situ: Bactericidal synerigism with heat. Int. Dairy J. 17, 760-769.   DOI   ScienceOn
33 Papastathopoulou, A., E. Bezirtzoglou, and N.J. Legakis. 1997. Bacterioides fragilis: production and sensitivity to bacteriocins. Anaerobe 3, 203-206.   DOI   ScienceOn
34 Park, S.H., K. Itoh, and T. Fujisawa. 2003. Characteristics and identification of enterocins produced by Enterococcus faecium JCM 5804. J. Appl. Microbiol. 95, 294-300.   DOI   ScienceOn
35 Lim, S.M. 2005. Synergistic effect of physico-chemical treatment and bacteriocin produced by Enterococcus faecium MJ-14. J. Food Hyg. Safety 20, 217-224.   과학기술학회마을
36 Lim, S.M. 2009. Combined effects of bacteriocin of Enterococcus faecalis MJ-213 and organic acid on Listeria monocytogenes inactivation. Kor. J. Microbiol. 45, 41-47.   과학기술학회마을
37 Lim, K. and A. Mustapha. 2004. Effects of cetylpyridinium chloride, acidified sodium chlorite, and potassium sorbate on populations of Escherichia coli O157:H7, Listeria monocytogenes, and Staphylococcus aureus on fresh beef. J. Food Prot. 67, 310-315.   DOI
38 Hurst, A. 1981. Nisin. Adv. Appl. Microbiol., 27, 85-123.   DOI
39 Grande, M.J., R. Lucas, H. Abriouel, E. Valdivia, N.B. Omar, M. Maqueda, M. martinez-Bueno, M. Martinez-Canamero, and A. Galvez. 2006. Inhibition of toxicogenic Bacillus cereus in rice-based foods by enterocin AS-48. Int. J. Food Microbiol. 106, 185-194.   DOI   ScienceOn
40 Herranz, C., P. Casaus, S. Mukhopadhyay, J.M. Martinez, J.M. Rodriguez, I.F. Nes, P.E. Hernandez, and L.M. Cintas. 2001. Enterococcus faecium P21: a strain occurring naturally in dryfermented sausages producing the class II bacteriocins enterocin A and enterocin B. Food Microbiol. 18, 115-131.   DOI   ScienceOn
41 Garcia, M.T., M.M. Canamero, R. Lucas, N.B. Omar, R.P. Pulido, and A. Galvez. 2004. Inhibition of Listeria monocytogenes by enterocin EJ97 produced by Enterococcus faecalis EJ97. Int. J. Food Microbiol. 90, 161-170.   DOI   ScienceOn
42 Davies, E.A., C.F. Milne, H.E. Bevis, R.W. Potter, J.M. Harris, G.C. Williams, L.V. Thomas, and J. Delves-Broughton. 1999. Effective use of nisin to control lactic acid bacterial spoilage in vacuum-packed Bologna-type sausage. J. Food Prot. 62, 1004-1010.   DOI
43 Ferrand, C., F. Marc, P. Fritsch, P. Cassand, and G.D. Blanquat. 2000. Mutagenicity and genotoxicity of sorbic acid-amine reaction products. Food Addit. Contam. 17, 895-901.   DOI   ScienceOn
44 Fyfe, L., F. Armstrong, and J. Stewart. 1998. Inhibition of Listeria monocytogenes and Salmonella enteritidis by combinations of plant oils and derivatives of benzoic acid: the development of synergistic antimicrobial combinations. Int. J. Antimicrob. Agents 9, 195-199.   DOI   ScienceOn