• 제목/요약/키워드: bactericide

검색결과 22건 처리시간 0.021초

Survey of Oxolinic Acid-Resistant Erwinia amylovora in Korean Apple and Pear Orchards, and the Fitness Impact of Constructed Mutants

  • Ham, Hyeonheui;Oh, Ga-Ram;Park, Dong Suk;Lee, Yong Hoon
    • The Plant Pathology Journal
    • /
    • 제38권5호
    • /
    • pp.482-489
    • /
    • 2022
  • Fire blight caused by Erwinia amylovora (Ea) is a devastating disease in apple and pear trees. Oxolinic acid (OA), a quinolone family antibiotic that inhibits DNA gyrase, has been employed to control fire blight in South Korea since 2015. The continuous use of this bactericide has resulted in the emergence of OA-resistant strains in bacterial pathogens in other countries. To investigate the occurrence of OA-resistant Ea strains in South Korea, we collected a total of 516 Ea isolates from diseased apple and pear trees in 2020-2021 and assessed their sensitivities to OA. We found that all isolates were susceptible to OA. To explore the possibility of emerging OA-resistant Ea by continuous application of OA, we exposed Ea stains to a range of OA concentrations and constructed OA-resistant mutant strains. Resistance was associated with mutations in the GyrA at codons 81 and 83, which result in glycine to cysteine and serine to arginine amino acid substitutions, respectively. The in vitro growth of the mutants in nutrient media and their virulence in immature apple fruits were lower than those of wild-type. Our results suggest that OA-resistance decreases the fitness of Ea. Future work should clarify the mechanisms by which OA-resistance decreases virulence of this plant pathogen. Continuous monitoring of OA-resistance in Ea is required to maintain the efficacy of this potent bactericide.

Efficient Photocatalytic Degradation of Salicylic Acid by Bactericidal ZnO

  • Karunakaran, Chockalingam;Naufal, Binu;Gomathisankar, Paramasivan
    • 대한화학회지
    • /
    • 제56권1호
    • /
    • pp.108-114
    • /
    • 2012
  • Salicylic acid degrades at different rates under UV-A light on $TiO_2$, ZnO, CuO, $Fe_2O_3$, $Fe_3O_4$ and $ZrO_2$ nanocrystals and all the oxides exhibit sustainable photocatalysis. While ZnO-photocatalysis displays Langmuir-Hinshelwood kinetics the others follow first order on [salicylic acid]. The degradation on all the oxides enhance with illumination intensity. Dissolved oxygen is essential for the photodegradation. ZnO is the most efficient photocatalyst to degrade salicylic acid. Besides serving as the effective photocatalyst to degrade salicylic acid it also acts as a bactericide and inactivates E.coli even in absence of direct light.

Estimation of Leaf Wetness Duration Using Empirical Models in Northwestern Costa Rica

  • Kim, K.S.;S.E.Taylor;M.L.Gleason
    • 한국농림기상학회:학술대회논문집
    • /
    • 한국농림기상학회 2003년도 춘계 학술발표논문집
    • /
    • pp.54-57
    • /
    • 2003
  • Implementation of disease-warning systems often results in substantial reduction of spray frequency (Lorente et al., 2000; Madden et al., 2000). This change reduces the burden of pesticide sprays on the environment and can also delay the development of fungicide and bactericide resistance. To assess the risk of outbreaks of many foliar diseases, it is important to quantify leaf wetness duration(LWD) since activities of foliar pathogen depend on the presence of free water on host crop surface for sufficient periods of time to allow infection to occur.(omitted)

  • PDF

2,6 dichloro-4-Nitro Aniline Mercuric Acetate의 合成과 그 藥劑效果에 관한 硏究 (Synthesis of 2,6-dichloro-4-Nitro Aniline Mercuric Acetate and Its Pharmaceutical Effects)

  • 조철형;신성의
    • 대한화학회지
    • /
    • 제14권3호
    • /
    • pp.207-212
    • /
    • 1970
  • A large variety of weed killers, insecticides, and bactericiedes on the market today are of almost infinite variety, but their pharmacological effects are different from each other according to the objects to cope with. Therefore, it is hoped that some chemical substance which serves as weed killer, an insecticide, and a bactericede at a same time, should be synthesized, in order to save expense and labor. I anticipated that the desire would be met by introducing to a molecule the radical which has the three effects. Here, I made an attempt of introducing $Cl_2$ gas to aniline considering the following respects: 1. Introduction velocity of $Cl_2$ gas under the varied temeratures and velocities of $Cl_2$ gas 2. The effect of reaction period under the condition which gives the most satisfactory yield. 3. The actions of catalysts, $SbCl_3$, $FeCl_3$, and $MoCl_5$, and their proportions when a mixture of the three catalysts is used in producing 2,6-dichloro-aniline. After consideration of above phenomena, the maximum production rate of 79.5% of 2.6-compound was obtained. With the compound I synthesized 2.6-dichloro-4-nitroaniline-mercuric acetate. Investigations of the effects of the compound as weed killer, an insecticide, and a bactericide showed that the compound, 2,6-dichloro-4-Nitro Aniline mercuric acetate has a satisfactory herbi-insecti-bactericidal effect.

  • PDF

천연 항균제처리를 병용한 과채류의 자연 저온저장기술 개발에 관한 연구 (Inhibitory Effects of Natural Antimicrobial Agenton Postharvest Decay in Fruits and Vegetables under Natural Low Temperature)

  • 조성환;정진환;류충호
    • 한국식품영양과학회지
    • /
    • 제23권2호
    • /
    • pp.315-321
    • /
    • 1994
  • In order to prevent the postharvest decay and to promote the freshness retention of fruits and vegetables grapefruit seed extract(GFSE), natural microorganism control agent, was applied to the preservation of fresh fruits and vegetables. Freshfruits and vegetables treated with GFSE and stored in polyethylene film (0.1mm) at 1$0^{\circ}C$-15$^{\circ}C$ of natural low temperature low kept better qualities in color and texture than the GFSE -not- treated control. The treatment using GFSE ina 250ppm to 500ppm concentration seemed to be an effective one for the control of Botrytis cinerea isolated in red wine grapes. After 4 weeks of storage the firmness rate of cucumbers treated with the dilute GFSE was four times higher than that of non-treated ones. GFSE showed effective inhibitory action towards plant pathological bacteria and fungi which were involved in the decay of fruits and vegetables. Minimum inhibitory concentrations of GFSE towards them were in the range of 250ppm to 500ppm .Direct visualization of microbial cells and spores using electron microscopy showed microbial cells and fungal spores the function of which was destroyed by treating with the dilute solutions of GFSE. It was observed that GFSE would reduced disease damages and have bactericide & fungicide properties during the storage of such fruits and vegetables as egg plant, wild edible greens , kumquat, and kiwi fruit.

  • PDF

Trunk Injection of Citrus Trees with a Polymeric Nanobactericide Reduces Huanglongbing Severity Caused by Candidatus Liberibacter asiaticus

  • Ramiro Guerrero-Santos;Gabriela Cabrales-Orona;John Paul Delano-Frier;Judith Cabello-Romero;Jose Roman Torres-Lubian;Jose Humberto Valenzuela-Soto
    • The Plant Pathology Journal
    • /
    • 제40권2호
    • /
    • pp.139-150
    • /
    • 2024
  • Huanglongbing (HLB) is a disease caused by the phloem-limited Candidatus Liberibacter asiaticus (CLas) that affects the citrus industry worldwide. To date, only indirect strategies have been implemented to eradicate HLB. Included among these is the population control of the psyllid vector (Diaphorina citri), which usually provides inconsistent results. Even though strategies for direct CLas suppression seem a priori more promising, only a handful of reports have been focused on a confrontation of the pathogen. Recent developments in polymer chemistry have allowed the design of polycationic self-assembled block copolymers with outstanding antibacterial capabilities. Here, we report the use of polymeric nano-sized bactericide particles (PNB) to control CLas directly in the phloem vasculature. The field experiments were performed in Rioverde, San Luis Potosí, and is one of the most important citrusproducing regions in Mexico. An average 52% reduction in the bacterial population was produced when PNB was injected directly into the trunk of 20 infected trees, although, in some cases, reduction levels reached 97%. These results position PNB as a novel and promising nanotechnological tool for citrus crop protection against CLas and other related pathogens.

참다래 꽃썩음병 예방약제 최적 살포 체계 (Optimum Spray Program of Preventive Bactericides for the Control of Bacterial Blossom Blight of Kiwifruit)

  • 신종섭;박종규;김경희;정재성;허재선;고영진
    • 식물병연구
    • /
    • 제10권4호
    • /
    • pp.297-303
    • /
    • 2004
  • 참다래 꽃썩음병은 주로 항생제 살포에 의해 방제되고있다. 스트랩토마이신황산염 옥시테트라사이클린 수화제, 농용신 쿠퍼 수화제와 옥쏘리닉에시드 수화제가 15개의 후보약제들 대상으로 한 실내시험 및 포장시험을 통하여 참다래 꽃썩음병 예방약제로 선발되었다. 참다래 꽃썩음병 방제를 위하여 스트랩토마이신황산염 옥시테트라사이클린 수화제와 농용신 쿠퍼 수화제의 살포적기는 개화기이고, 여러 가지 살포시기별 다양한 약제살포 조합 중에서 참다래 꽃썩음병 방제를 위한 스트랩토마이신황산염 옥시테트라사이클린 수화제와 농용신 쿠퍼 수화제의 최적 살포 회수는 참다래 개화기인 5월 초부터 10일 간격으로 3회로 판명되었다.

코퍼 하이드록사이드를 이용한 토마토 풋마름병 방제 (Control of Bacterial Wilt of Tomato using Copper Hydroxide)

  • 한유경;한경숙;이성찬;김수
    • 농약과학회지
    • /
    • 제15권3호
    • /
    • pp.298-302
    • /
    • 2011
  • 국내에서 Ralstonia solanacearum에 의한 풋마름병은 토마토 재배에 심각한 피해를 주고 있다. R. solanacearum에 의한 풋마름병을 방제하기 위한 약제를 선발하기 위하여 5종 항생제를 이용하여 균에 대한 생장 억제 효과와 포장에서의 토마토 풋마름병 방제효과를 조사하였다 R. solanacearum에 대한 생장억제효과를 조사한 결과, streptomycin 수화제, oxytetracyclin streptomycin sulfate 수화제, oxolinic acid 수화제는 병원균에 대한 생육억제 효과가 우수하였다. 포장에서 토마토 풋마름병에 대한 방제효과 시험을 실시한 결과, copper hydroxide 수화제가 62.5%의 가장 높은 방제효과를 나타내었다. Copper hydroxide 수화제는 친환경유기농자재에 등록된 약제로서 관행 재배뿐만 아니라 토마토 친환경 재배시에도 풋마름병 방제에 사용할 수 있을 것이다.

Application of a Microbial Toxicity Assay for Monitoring Treatment Efficiency of Pentachlorophenol in Water using UV Photolysis and $TiO_2$ Photocatalysis

  • Kim, Jung-Kon;Cho, Il-Hyung;Zoh, Kyung-Duk;Choi, Kyung-Ho
    • 한국환경보건학회:학술대회논문집
    • /
    • 한국환경보건학회 2004년도 International Conference Global Environmental Problems and their Health Consequences
    • /
    • pp.146-150
    • /
    • 2004
  • Degradation efficiency of pentachlorophenol (PCP) by using direct UV photolysis and $TiO_2$ photocatalysis was evaluated with both chemical analyses and acute toxicity assessment employing luminescent bacteria Vibrio fischeri. PCP was chosen as a target compound in this study because of its wide application as fungicide, bactericide, insecticide and wood preservative in agriculture and many industries, in addition to its well-known environmental consequences. The acute toxicity to the microbe was reduced by >60% when applying UV alone, and was completely removed when treated with $UV-TiO_2$ combinations. Toxicity reduction pattern determined with the Microtox Assay generally corresponds with the chemistry data: However, it should be noted that toxicity was greater than expected by the chemistry data. Formation of TCBQ, a toxic byprodut, could not explain observed microbial toxicity. These observations are probably due to the presence of unidentified toxic PCP byproducts, which may include polychlorinated dibenzodioxins and polychlorinated dibenzofurans. When Microtox results were compared between different exposure time, i.e.,5 min and 15 min, an interesting pattern was noted with $UVA-\;TiO_2$ treatment. While no microbial toxicity was observed with 5 min exposure, an EC50 value of 45.4% was estimated with 15 min exposure, which was not observed in $UVB-\;TiO_2$ exposure. This result may suggest the presence of unidentified toxic degradation products generated in the later stage of treatment. Based on this study, $TiO_2$ photocatalyst, together with UVB photolysis could improve the removal of both PCP and its toxic derivatives in more efficient way. The Microtox Assay is promising and economical method for monitoring efficiency of wastewater treatment processes.

  • PDF

BGRcast: A Disease Forecast Model to Support Decision-making for Chemical Sprays to Control Bacterial Grain Rot of Rice

  • Lee, Yong Hwan;Ko, Sug-Ju;Cha, Kwang-Hong;Park, Eun Woo
    • The Plant Pathology Journal
    • /
    • 제31권4호
    • /
    • pp.350-362
    • /
    • 2015
  • A disease forecast model for bacterial grain rot (BGR) of rice, which is caused by Burkholderia glumae, was developed in this study. The model, which was named 'BGRcast', determined daily conduciveness of weather conditions to epidemic development of BGR and forecasted risk of BGR development. All data that were used to develop and validate the BGRcast model were collected from field observations on disease incidence at Naju, Korea during 1998-2004 and 2010. In this study, we have proposed the environmental conduciveness as a measure of conduciveness of weather conditions for population growth of B. glumae and panicle infection in the field. The BGRcast calculated daily environmental conduciveness, $C_i$, based on daily minimum temperature and daily average relative humidity. With regard to the developmental stages of rice plants, the epidemic development of BGR was divided into three phases, i.e., lag, inoculum build-up and infection phases. Daily average of $C_i$ was calculated for the inoculum build-up phase ($C_{inf}$) and the infection phase ($C_{inc}$). The $C_{inc}$ and $C_{inf}$ were considered environmental conduciveness for the periods of inoculum build-up in association with rice plants and panicle infection during the heading stage, respectively. The BGRcast model was able to forecast actual occurrence of BGR at the probability of 71.4% and its false alarm ratio was 47.6%. With the thresholds of $C_{inc}=0.3$ and $C_{inf}=0.5$, the model was able to provide advisories that could be used to make decisions on whether to spray bactericide at the preand post-heading stage.