Browse > Article
http://dx.doi.org/10.5012/jkcs.2012.56.1.108

Efficient Photocatalytic Degradation of Salicylic Acid by Bactericidal ZnO  

Karunakaran, Chockalingam (Department of Chemistry, Annamalai University)
Naufal, Binu (Department of Chemistry, Annamalai University)
Gomathisankar, Paramasivan (Department of Chemistry, Annamalai University)
Publication Information
Abstract
Salicylic acid degrades at different rates under UV-A light on $TiO_2$, ZnO, CuO, $Fe_2O_3$, $Fe_3O_4$ and $ZrO_2$ nanocrystals and all the oxides exhibit sustainable photocatalysis. While ZnO-photocatalysis displays Langmuir-Hinshelwood kinetics the others follow first order on [salicylic acid]. The degradation on all the oxides enhance with illumination intensity. Dissolved oxygen is essential for the photodegradation. ZnO is the most efficient photocatalyst to degrade salicylic acid. Besides serving as the effective photocatalyst to degrade salicylic acid it also acts as a bactericide and inactivates E.coli even in absence of direct light.
Keywords
Semiconductor; Nanoparticles; Photodegradation; Bactericidal activity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Shinde, S. S.; Bhosale, C. H.; Rajpure, K. Y. J. Mol. Catal. A 2011, 347, 65.   DOI
2 Jiang, W.; Mashayekhi, H.; Xing, B. Environ. Pollut. 2009, 157, 1619.   DOI   ScienceOn
3 Hu, X.; Cook, S.; Wang, P.; Hwang, H.-M. Sci. Total Environ. 2009, 407, 3070.   DOI   ScienceOn
4 Xu, Y.; Schoonen, M. A. A. Am. Mineral. 2000, 85, 543.
5 Karunakaran, C.; Senthilvelan, S.; Karuthapandian, S. J. Photochem. Photobiol. A 2005, 172, 207.   DOI   ScienceOn
6 Vincze, L.; Kemp, T. J. J. Photochem. Photobiol. A 1995, 87, 257.   DOI   ScienceOn
7 Karunakaran, C.; Sujatha, M. P.; Gomathisankar, P. Monatsh. Chem. 2009, 140, 1269.   DOI   ScienceOn
8 Karunakaran, C.; Senthilvelan, S. J. Mol. Catal. A 2005, 233, 1.   DOI
9 Hu, X.; Li, G.; Yu, J. C. Langmuir 2010, 26, 3031.   DOI   ScienceOn
10 Hagfeldt, A.; Gratzel, M. Chem. Rev. 1995, 95, 49.   DOI   ScienceOn
11 Chhor, K.; Bocquet, J. F.; Colbeau-Justin, C. Mater. Chem. Phys. 2004, 86, 123.   DOI   ScienceOn
12 Nagaveni, K.; Sivalingam, G.; Hegde, M. S.; Madras, G. Environ. Sci. Technol. 2004, 38, 1600.   DOI   ScienceOn
13 Fotou, G. P.; Pratsinis, S. E. Chem. Eng. Commun. 1996, 151, 251.   DOI   ScienceOn
14 Tomkiewicz, M. Catal. Today 2000, 58, 115.   DOI
15 Matthews, R. W. J. Phys. Chem. 1987, 91, 3328.   DOI
16 Wang, W.; Song, M. Micropor. Mesopor. Mater. 2006, 96, 255.   DOI
17 Hodak, J.; Quinteros, C.; Litter, M. I.; Roman, E. S. J. Chem. Soc. Faraday Trans. 1996, 92, 5081.   DOI   ScienceOn
18 Hidaka, H.; Honjo, H.; Horikoshi, S.; Serpone, N. Catal. Commun. 2006, 7, 331.   DOI   ScienceOn
19 Matthews, R. W. Wat. Res. 1991, 25, 1169.   DOI   ScienceOn
20 Sun, B.; Smirniotis, P. G.; Boolchand, P. Langmuir 2005, 21, 11398.
21 Colon, G.; Hidalgo, M. C.; Navio, J. A. Appl. Catal., A 2002, 231, 185.   DOI
22 Anderson, C.; Bard, A. J. J. Phys. Chem. B 1997, 101, 2611.   DOI
23 Ismail, M.; Bousselmi, L.; Zahraa, O. J. Photochem. Photobiol. A 2011, 222, 314.   DOI   ScienceOn