• Title/Summary/Keyword: bactericidal kinetics

Search Result 9, Processing Time 0.013 seconds

Antimicrobial Effects of a Hexapetide KCM21 against Pseudomonas syringae pv. tomato DC3000 and Clavibacter michiganensis subsp. michiganensis

  • Choi, Jeahyuk;Baek, Kwang-Hyun;Moon, Eunpyo
    • The Plant Pathology Journal
    • /
    • v.30 no.3
    • /
    • pp.245-253
    • /
    • 2014
  • Antimicrobial peptides (AMPs) are small but effective cationic peptides with variable length. In previous study, four hexapeptides were identified that showed antimicrobial activities against various phytopathogenic bacteria. KCM21, the most effective antimicrobial peptide, was selected for further analysis to understand its modes of action by monitoring inhibitory effects of various cations, time-dependent antimicrobial kinetics, and observing cell disruption by electron microscopy. The effects of KCM21 on Gram-negative strain, Pseudomonas syringae pv. tomato DC3000 and Gram-positive strain, Clavibacter michiganensis subsp. michiganensis were compared. Treatment with divalent cations such as $Ca^{2+}$ and $Mg^{2+}$ inhibited the bactericidal activities of KCM21 significantly against P. syringae pv. tomato DC3000. The bactericidal kinetic study showed that KCM21 killed both bacteria rapidly and the process was faster against C. michiganensis subsp. michiganensis. The electron microscopic analysis revealed that KCM21 induced the formation of micelles and blebs on the surface of P. syringae pv. tomato DC3000 cells, while it caused cell rupture against C. michiganensis subsp. michiganensis cells. The outer membrane alteration and higher sensitivity to $Ca^{2+}$ suggest that KCM21 interact with the outer membrane of P. syringae pv. tomato DC3000 cells during the process of killing, but not with C. michiganensis subsp. michiganensis cells that lack outer membrane. Considering that both strains had similar sensitivity to KCM21 in LB medium, outer membrane could not be the main target of KCM21, instead common compartments such as cytoplasmic membrane or internal macromolecules might be a possible target(s) of KCM21.

Efficient Photocatalytic Degradation of Salicylic Acid by Bactericidal ZnO

  • Karunakaran, Chockalingam;Naufal, Binu;Gomathisankar, Paramasivan
    • Journal of the Korean Chemical Society
    • /
    • v.56 no.1
    • /
    • pp.108-114
    • /
    • 2012
  • Salicylic acid degrades at different rates under UV-A light on $TiO_2$, ZnO, CuO, $Fe_2O_3$, $Fe_3O_4$ and $ZrO_2$ nanocrystals and all the oxides exhibit sustainable photocatalysis. While ZnO-photocatalysis displays Langmuir-Hinshelwood kinetics the others follow first order on [salicylic acid]. The degradation on all the oxides enhance with illumination intensity. Dissolved oxygen is essential for the photodegradation. ZnO is the most efficient photocatalyst to degrade salicylic acid. Besides serving as the effective photocatalyst to degrade salicylic acid it also acts as a bactericide and inactivates E.coli even in absence of direct light.

Serum bactericidal activity and disposition kinetics of enrofloxacin in Korean native goats (한국재래산양에서 Enrofloxacin의 혈청내 항균효과와 체내동태)

  • Yun, Hyo-in;Kim, Moo-youl;Park, Seung-chun
    • Korean Journal of Veterinary Research
    • /
    • v.37 no.2
    • /
    • pp.321-330
    • /
    • 1997
  • Enrofloxacin is one of the second-generation quinolones which have been widely used to treat bacterial infections in various species including chicken, pig, horse and cattle. The objective of the present study was to describe the serum bactericidal activity(SBA) of enrofloxacin, its pharmacokinetic behaviors after intramuscular or intravenous administration to Korean native goats in the dose rate of 5mg/kg b.w. The results obtained through this study were as follows : 1. Sera collected from both sexes of Korean native goats administered 5mg/kg i.v. or i.m. showed potent antibacterial activities up to the 12 hours by way of the serum bactericidal activity. 2. Concentrations of enrofloxacin in the biological samples were measured by high-performance liquid chromatography(HPLC) so as to study pharmacokinetic characteristics. For detection of enrofloxacin, 10% TCA was optimal for protein precipitation and the mobile phase was 0.01M citric acid/methanol/acetonitrile(7/2/1, pH 3.5) with solid phase being the $C_{18}$ reversephase column and detection wavelength being 278nm. The limit of detection of enrofloxacin on HPLC was $0.05{\mu}g/ml$. 3. Pharmacokinetic profile of enrofloxacin administered 5mg/kg i.v. in Korean native goats was best described by two-compartment open model and that administered i.m. the same rate by one-compartment model. There were no sex differences in pharmacokineticl parameters. In conclusion, enrofloxacin showed potent in vivo antibacterial activity and excellent pharmacokinetic properties in Korean native goats, hence it may be used as a potential antibacterial in the veterinary clinical settings.

  • PDF

Synthesis and Antibiotic Activities of CRAMP, a Cathelin-related Antimicrobial Peptide and Its Fragments

  • 하종명;신송엽;강신원
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.9
    • /
    • pp.1073-1077
    • /
    • 1999
  • CRAMP, a 37-amino acid cationic antimicrobial peptide was recently deduced from the cDNA cloned from mouse femoral marrow RNA. In order to investigate the structure-activity relationship and functional region of CRAMP, CRAMP and its 18-mer overlapping peptides were synthesized by the solid phase method. CRAMP showed broad spectrum antibacterial activity against both Gram-positive and Gram-negative bacterial strains (MIC: 3.125-6.25 μM) but had no hemolytic activity until 50 μM. CRAMP was found to have a potent anticancer activity (IC50: 12-23 μM) against two human small cell lung cancer cell lines. Furthermore, CRAMP was found to display faster bactericidal rate in B. subtilis rather than E. coli in the kinetics of bacterial killing. Among 18-meric overlapping fragment peptides, only CRAMP (16-33) displayed potent antibacterial activity (MIC: 12.5-50 μM) against several bacteria with no hemolytic activity. Circular dichroism (CD) spectra anal-ysis indicated that CRAMP and its analogues will form the amphipathic α-helical conformation in the cell membranes similar to other antimicrobial peptides, such as cecropins and magainins.

Modified Pharmacokinetic/Pharmacodynamic model for electrically activated silver-titanium implant system

  • Tan, Zhuo;Orndorff, Paul E.;Shirwaiker, Rohan A.
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.2 no.3
    • /
    • pp.127-141
    • /
    • 2015
  • Silver-based systems activated by low intensity direct current continue to be investigated as an alternative antimicrobial for infection prophylaxis and treatment. However there has been limited research on the quantitative characterization of the antimicrobial efficacy of such systems. The objective of this study was to develop a semi-mechanistic pharmacokinetic/pharmacodynamic (PK/PD) model providing the quantitative relationship between the critical system parameters and the degree of antimicrobial efficacy. First, time-kill curves were experimentally established for a strain of Staphylococcus aureus in a nutrientrich fluid environment over 48 hours. Based on these curves, a modified PK/PD model was developed with two components: a growing silver-susceptible bacterial population and a depreciating bactericidal process. The test of goodness-of-fit showed that the model was robust and had good predictability ($R^2>0.7$). The model demonstrated that the current intensity was positively correlated to the initial killing rate and the bactericidal fatigue rate of the system while the anode surface area was negatively correlated to the fatigue rate. The model also allowed the determination of the effective range of these two parameters within which the system has significant antimicrobial efficacy. In conclusion, the modified PK/PD model successfully described bacterial growth and killing kinetics when the bacteria were exposed to the electrically activated silver-titanium implant system. This modeling approach as well as the model itself can also potentially contribute to the development of optimal design strategies for other similar antimicrobial systems.

Restoring Ampicillin Sensitivity in Multidrug-Resistant Escherichia coli Following Treatment in Combination with Coffee Pulp Extracts

  • Anchalee Rawangkan;Atchariya Yosboonruang;Anong Kiddee;Achiraya Siriphap;Grissana Pook-In;Ratsada Praphasawat;Surasak Saokaew;Acharaporn Duangjai
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.9
    • /
    • pp.1179-1188
    • /
    • 2023
  • Escherichia coli, particularly multidrug-resistant (MDR) strains, is a serious cause of healthcare-associated infections. Development of novel antimicrobial agents or restoration of drug efficiency is required to treat MDR bacteria, and the use of natural products to solve this problem is promising. We investigated the antimicrobial activity of dried green coffee (DGC) beans, coffee pulp (CP), and arabica leaf (AL) crude extracts against 28 isolated MDR E. coli strains and restoration of ampicillin (AMP) efficiency with a combination test. DGC, CP, and AL extracts were effective against all 28 strains, with a minimum inhibitory concentration (MIC) of 12.5-50 mg/ml and minimum bactericidal concentration of 25-100 mg/ml. The CP-AMP combination was more effective than CP or AMP alone, with a fractional inhibitory concentration index value of 0.01. In the combination, the MIC of CP was 0.2 mg/ml (compared to 25 mg/ml of CP alone) and that of AMP was 0.1 mg/ml (compared to 50 mg/ml of AMP alone), or a 125-fold and 500-fold reduction, respectively, against 13-drug resistant MDR E. coli strains. Time-kill kinetics showed that the bactericidal effect of the CP-AMP combination occurred within 3 h through disruption of membrane permeability and biofilm eradication, as verified by scanning electron microscopy. This is the first report indicating that CP-AMP combination therapy could be employed to treat MDR E. coli by repurposing AMP.

Inactivation of Indicating Microorganisms in Ballast Water Using Chlorine Dioxide (이산화염소를 이용한 선박평형수 내 지표 미생물 불활성화)

  • Park, Jong-Hun;Sim, Young-Bo;Kang, Shin-Young;Kim, Sang-Hyoun
    • Ecology and Resilient Infrastructure
    • /
    • v.5 no.3
    • /
    • pp.111-117
    • /
    • 2018
  • Disinfection of ballast water using chlorine dioxide was investigated under various initial microorganism contents, dose concentrations and pH values. Kinetics of microorganism inactivation and byproduct generation of chlorine dioxide treatment were compared with the chlorine treatment. Results of treatments with chlorine dioxide concentrations of 0 to $10mg\;Cl_2/L$ showed that The optimum concentration of chlorine dioxide required for disinfection of ballast water was 1 mg/L. The difference among the second order reaction constants for bacterial disinfection at pH 7.2 to 9.2 for chlorine dioxide was less than 5% for both bacteria. This result implied that the bactericidal effects of chlorine dioxide was independent of the pH in the examined range. On the other hand, the inactivation kinetics of chlorine for E. coli and Enterococcus decreased by 17% and 25%, respectively, when pH increased from 7.2 to 9.2. The bactericidal power of chlorine dioxide was superior to sodium hypochlorite above pH 8.2, the average pH value of sea water. Furthermore, treatments of chlorine dioxide generated less harmful byproducts than chlorine and had a long-term disinfection effect on bacteria and phytoplankton from the results of experiment for 30 days. Chlorine dioxide would be a promising alternative disinfectant for ballast water.

Identification and Partial Characterization of Cerein BS229, a Bacteriocin Produced by Bacillus cereus BS229

  • Paik, Hyun-Dong;Lee, Na-Kyoung;Lee, Kwang-Ho;Hwang, Yong-Il;Pan, Jae-Gu
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.2
    • /
    • pp.195-200
    • /
    • 2000
  • Bacillus cereus BS229 was identified as a bacteriocin producer with a bactericidal activity against Bacillus thuringiensis subsp. Thomsoni BR-40. Bacillus cereus BS229 and cerein BS229, named tentatively as the bacteriocin produced by Bacillus cereus BS229, showed a narrow spectrum of actibity against Gram-positive and Gram-negative bacteria, along with yeast and molds. Production of cerein BS229 in a 5-1 fermenter followed typical kinetics of primary metabolite synthesis. The antibacterial activity of cerein BS229 on sensitive indicator cells disappeared completely by ${\alpha}-chmotrypsin$ or proteinase K, which indicates its proteinaceous nature. Cerein BS229 seemed to be very stable throughout the pH range of 2.0 of 9.0 and it was relatively heat labile, despite the fact that bacteriocin activity was still detected after being boied for 30min. Cerein BS229 actibity has been changed with some of the organic solvents such as toluene, ethanol, and chloroform. Direct detection of cerein BS229 actibity on SDS-PAGE suggested that it had an apparent molecular mass of about 8.2 kDa.

  • PDF

Antimicrobial Effect of Inula britannica Flower Extract against Methicillin-resistant Staphylococcus aureus (Methicillin 저항성 Staphylococcus aureus에 대한 선복화(Inula britannica flowers) 추출물의 항균효과)

  • Lee, Na-Kyoung;Lee, Jang-Hyun;Lee, Yong Ju;Ahn, Sin Hye;Eom, Su Jin;Paik, Hyun-Dong
    • Microbiology and Biotechnology Letters
    • /
    • v.41 no.3
    • /
    • pp.335-340
    • /
    • 2013
  • The antimicrobial effect of the methanol extract of Inula britannica flowers against methicillin resistant Staphylococcus aureus (MRSA) was investigated. It was confirmed that the methanol extract is mainly composed of quercetin, which has antimicrobial properties. The antimicrobial effect of the methanol extract against 3 MRSA strains was determined by the disc diffusion method. The minimal inhibitory concentrations were ranged from 0.625 mg/ml to 1.25 mg/ml, and the minimum bactericidal concentrations were 2.5 mg/ml. Time kill kinetics revealed bactericidal activities, and the morphological alterations in S. aureus ATCC 33591 treated with the extract were observed using a scanning electron microscope. The methanol extract affected the expression of the resistant genes, mecA, mecI, and mecRI in mRNA. Therefore, the methanol extract of I. britannica flowers clearly demonstrated an antimicrobial effect against MRSA and these results suggest a potential for application as a natural antimicrobial agent.