Browse > Article
http://dx.doi.org/10.5423/PPJ.OA.02.2014.0011

Antimicrobial Effects of a Hexapetide KCM21 against Pseudomonas syringae pv. tomato DC3000 and Clavibacter michiganensis subsp. michiganensis  

Choi, Jeahyuk (Department of Biological Science, Ajou University)
Baek, Kwang-Hyun (School of Biotechnology, Yeungnam University)
Moon, Eunpyo (Department of Biological Science, Ajou University)
Publication Information
The Plant Pathology Journal / v.30, no.3, 2014 , pp. 245-253 More about this Journal
Abstract
Antimicrobial peptides (AMPs) are small but effective cationic peptides with variable length. In previous study, four hexapeptides were identified that showed antimicrobial activities against various phytopathogenic bacteria. KCM21, the most effective antimicrobial peptide, was selected for further analysis to understand its modes of action by monitoring inhibitory effects of various cations, time-dependent antimicrobial kinetics, and observing cell disruption by electron microscopy. The effects of KCM21 on Gram-negative strain, Pseudomonas syringae pv. tomato DC3000 and Gram-positive strain, Clavibacter michiganensis subsp. michiganensis were compared. Treatment with divalent cations such as $Ca^{2+}$ and $Mg^{2+}$ inhibited the bactericidal activities of KCM21 significantly against P. syringae pv. tomato DC3000. The bactericidal kinetic study showed that KCM21 killed both bacteria rapidly and the process was faster against C. michiganensis subsp. michiganensis. The electron microscopic analysis revealed that KCM21 induced the formation of micelles and blebs on the surface of P. syringae pv. tomato DC3000 cells, while it caused cell rupture against C. michiganensis subsp. michiganensis cells. The outer membrane alteration and higher sensitivity to $Ca^{2+}$ suggest that KCM21 interact with the outer membrane of P. syringae pv. tomato DC3000 cells during the process of killing, but not with C. michiganensis subsp. michiganensis cells that lack outer membrane. Considering that both strains had similar sensitivity to KCM21 in LB medium, outer membrane could not be the main target of KCM21, instead common compartments such as cytoplasmic membrane or internal macromolecules might be a possible target(s) of KCM21.
Keywords
antimicrobial synthetic peptides; bactericidal kinetics; electron microscopy; plant disease control;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Blondelle, S. E., Takahashi, E., Houghten, R. A. and Perez-Paya, E. 1996. Rapid identification of compounds with enhanced antimicrobial activity by using conformationally defined combinatorial libraries. Biochem. J. 313:141-147.   DOI
2 Abee, T., Rombouts, F. M., Hugenholtz, J., Guihard, G. and Letellier, L. 1994. Mode of action of nisin z against Listeria monocytogenes scott a grown at high and low temperatures. Appl. Environ. Microbiol. 60:1962-1968.
3 Anderson, P. K., Cunningham, A. A., Patel, N. G., Morales, F. J., Epstein, P. R. and Daszak, P. 2004. Emerging infectious diseases of plants: Pathogen pollution, climate change and agrotechnology drivers. Trends Ecol. Evol. 19:535-544.   DOI   ScienceOn
4 Blondelle, S. E., Perez-Paya, E. and Houghten, R. A. 1996. Synthetic combinatorial libraries: Novel discovery strategy for identification of antimicrobial agents. Antimicrob. Agents Chemother. 40:1067-1071.
5 Brogden, K. A. 2005. Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol. 3:238-250.   DOI   ScienceOn
6 Choi, J. and Moon, E. 2009. Identification of novel bioactive hexapeptides against phytopathogenic bacteria through rapid screening of a synthetic combinatorial library. J. Microbiol. Biotechnol. 19:792-802.   DOI   ScienceOn
7 Hancock, R. E. and Lehrer, R. 1998. Cationic peptides: A new source of antibiotics. Trends Biotechnol. 16:82-88.   DOI   ScienceOn
8 Crandall, A. D. and Montville, T. J. 1998. Nisin resistance in Lis teria monocytogenes ATCC 700302 is a complex phenotype. Appl. Environ. Microbiol. 64:231-237.
9 Hancock, R. E. 1997. Antibacterial peptides and the outer membranes of gram-negative bacilli. J. Med. Microbiol. 46:1-3.   DOI   ScienceOn
10 Hancock, R. E. and Chapple, D. S. 1999. Peptide antibiotics. Antimicrob. Agents Chemother. 43:1317-1323.
11 Hancock, R. E. and Sahl, H. G. 2006. Antimicrobial and hostdefense peptides as new anti-infective therapeutic strategies. Nat. Biotechnol. 24:1551-1557.   DOI   ScienceOn
12 Houghten, R. A. 2000. Parallel array and mixture-based synthetic combinatorial chemistry: Tools for the next millennium. Annu. Rev. Pharmacol. Toxicol. 40:273-282.   DOI   ScienceOn
13 Houghten, R. A., Appel, J. R., Blondelle, S. E., Cuervo, J. H., Dooley, C. T. and Pinilla, C. 1992. The use of synthetic peptide combinatorial libraries for the identification of bioactive peptides. Biotechniques 13:412-421.
14 Houghten, R. A., Pinilla, C., Appel, J. R., Blondelle, S. E., Dooley, C. T., Eichler, J., Nefzi, A. and Ostresh, J. M. 1999. Mixture- based synthetic combinatorial libraries. J. Med. Chem. 42:3743-3778.   DOI   ScienceOn
15 Houghten, R. A., Pinilla, C., Blondelle, S. E., Appel, J. R., Dooley, C. T. and Cuervo, J. H. 1991. Generation and use of synthetic peptide combinatorial libraries for basic research and drug discovery. Nature 354:84-86.   DOI   ScienceOn
16 Kim, K. S., Morrison, J. O. and Bayer, A. S. 1982. Deficient autolytic enzyme activity in antibiotic-tolerant lactobacilli. Infect. Immun. 36:582-585.
17 Lopez-Garcia, B., Perez-Paya, E. and Marcos, J. F. 2002. Identification of novel hexapeptides bioactive against phytopathogenic fungi through screening of a synthetic peptide combinatorial library. Appl. Environ. Microbiol. 68:2453-2460.   DOI   ScienceOn
18 Miyasaki, K. T., Iofel, R., Oren, A., Huynh, T. and Lehrer, R. I. 1998. Killing of Fusobacterium nucleatum, Porphyromonas gingivalis and Prevotella intermedia by protegrins. J. Periodental Res. 33:91-98.
19 Lawyer, C., Pai, S., Watanabe, M., Borgia, P., Mashimo, T., Eagleton, K. and Watanabe, K. 1996. Antimicrobial activity of a 13 amino acid tryptophan-rich peptide derived from a putative porcine precursor proten of a novel family of atibacterial prptides. FEBS Lett. 390:95-98.   DOI   ScienceOn
20 Lemaitre, B. and Hoffmann, J. 2007. The host defense of Drosophila melanogaster. Annu. Rev. Immunol. 25:697-743.   DOI   ScienceOn
21 Munoz, A., Lopez-Garcia, B., Perez-Paya, E. and Marcos, J. F. 2007. Antimicrobial properties of derivatives of the cationic tryptophan-rich hexapeptide paf26. Biochem. Biophys. Res. Commun. 354:172-177.   DOI   ScienceOn
22 Reddy, K. V., Yedery, R. D. and Aranha, C. 2004. Antimicrobial peptides: Premises and promises. Int. J. Antimicrob. Agents 24:536-547.   DOI   ScienceOn
23 Sal-Man, N., Oren, Z. and Shai, Y. 2002. Preassembly of membrane- active peptides is an important factor in their selectivity toward target cells. Biochemistry 41:11921-11930.   DOI   ScienceOn
24 Sugiarto, H. and Yu, P. L. 2007. Effects of cations on antimicrobial activity of ostricacins-1 and 2 on E. coli O157:H7 and S. aureus 1056MRSA. Curr. Microbiol. 55:36-41.   DOI
25 Yeaman, M. R. and Yount, N. Y. 2003. Mechanisms of antimicrobial peptide action and resistance. Pharmacol. Rev. 55:27-55.   DOI   ScienceOn
26 Yedery, R. D. and Reddy, K. V. 2005. Antimicrobial peptides as microbicidal contraceptives: Prophecies for prophylactics- -a mini review. Eur. J. Contracept. Reprod. Health. Care. 10:32-42.   DOI   ScienceOn
27 Sundin, G. W. and Bender, C. L. 1993. Ecological and genetic analysis of copper and streptomycin resistance in Pseudomonas syringae pv. syringae. Appl. Environ. Microbiol. 59:1018-1024.
28 Vidaver, A. K. 2002. Uses of antimicrobials in plant agriculture. Clin. Infect. Dis. 34:107-110.   DOI   ScienceOn
29 Wei, G. X. and Bobek, L. A. 2005. Human salivary mucin muc7 12-mer-l and 12-mer-d peptides: Antifungal activity in saliva, enhancement of activity with protease inhibitor cocktail or edta, and cytotoxicity to human cells. Antimicrob. Agents Chemother. 49:2336-2342.   DOI   ScienceOn
30 Lopez-Garcia, B., Gonzalez-Candelas, L., Perez-Paya, E. and Marcos, J. F. 2000. Identification and characterization of a hexapeptide with activity against phytopathogenic fungi that cause postharvest decay in fruits. Mol. Plant-Microbe Interact. 13:837-846.   DOI   ScienceOn
31 Concannon, S. P., Crowe, T. D., Abercrombie, J. J., Molina, C. M., Hou, P., Sukumaran, D. K., Raj, P. A. and Leung, K. P. 2003. Susceptibility of oral bacteria to an antimicrobial decapeptide. J. Med. Microbiol. 52:1083-1093.   DOI   ScienceOn