• Title/Summary/Keyword: bacterial spot disease

Search Result 76, Processing Time 0.023 seconds

Biocontrol of Rice Diseases by Microorganisms (미생물을 활용한 친환경적인 벼 병해 방제법)

  • Kim, Jung-Ae;Song, Jeong-Sup;Jeong, Min-Hye;Park, Sook-Young;Kim, Yangseon
    • Research in Plant Disease
    • /
    • v.27 no.4
    • /
    • pp.129-136
    • /
    • 2021
  • Rice is responsible for the stable crop of 3 billion people worldwide, about half of Asian depends on it, and rice is grown in more than 100 countries. Rice diseases can lead to devastating economic loss by decreasing yield production, disturbing a stable food supply and demand chain. The most commonly used method to control rice disease is chemical control. However, misuse of chemical control can cause environmental pollution, residual toxicity, and the emergence of chemical-resistant pathogens, the deterioration of soil quality, and the destruction of biodiversity. In order to control rice diseases, research on alternative biocontrol is actively pursued including microorganism-oriented biocontrol agents. Microbial agents control plant disease through competition with and antibiotic effects and parasitism against plant pathogens. Microorganisms isolated from the rice rhizosphere are studied comprehensively as biocontrol agents against rice pathogens. Bacillus sp., Pseudomonas sp., and Trichoderma sp. were reported to control rice diseases, such as blast, sheath blight, bacterial leaf blight, brown spot, and bakanae diseases. Here we reviewed the microorganisms that are studied as biocontrol agents against rice diseases.

Development of Fluidigm SNP Type Genotyping Assays for Marker-assisted Breeding of Chili Pepper (Capsicum annuum L.)

  • Kim, Haein;Yoon, Jae Bok;Lee, Jundae
    • Horticultural Science & Technology
    • /
    • v.35 no.4
    • /
    • pp.465-479
    • /
    • 2017
  • Chili pepper (Capsicum annuum L.) is an economically important horticultural crop in Korea; however, various diseases, including Phytophthora root rot, anthracnose, powdery mildew, Cucumber mosaic virus (CMV), Pepper mild mottle virus (PMMoV), and Pepper mottle virus (PepMoV), severely affect their productivity and quality. Therefore, pepper varieties with resistance to multiple diseases are highly desired. In this study, we developed 20 SNP type assays for three pepper populations using Fluidigm nanofluidic dynamic arrays. A total of 4,608 data points can be produced with a 192.24 dynamic array consisting of 192 samples and 24 SNP markers. The assays were converted from previously developed sequence-tagged-site (STS) markers and included markers for resistance to Phytophthora root rot (M3-2 and M3-3), anthracnose (CcR9, CA09g12180, CA09g19170, CA12g17210, and CA12g19240), powdery mildew (Ltr4.1-40344, Ltr4.2-56301, and Ltr4.2-585119), bacterial spot (Bs2), CMV (Cmr1-2), PMMoV (L4), and PepMoV (pvr1 and pvr2-123457), as well as for capsaicinoids content (qcap3.1-40134, qcap6.1-299931, qcap6.1-589160, qdhc2.1-1335057, and qdhc2.2-43829). In addition, 11 assays were validated through a comparison with the corresponding data of the STS markers. Furthermore, we successfully applied the assays to commercial $F_1$ cultivars and to our breeding lines. These 20 SNP type assays will be very useful for developing new superior pepper varieties with resistance to multiple diseases and a higher content of capsaicinoids for increased pungency.

Identification of a Cupin Protein Gene Responsible for Pathogenicity, Phage Susceptibility and LPS Synthesis of Acidovorax citrulli

  • Rahimi-Midani, Aryan;Kim, Min-Jung;Choi, Tae-Jin
    • The Plant Pathology Journal
    • /
    • v.37 no.6
    • /
    • pp.555-565
    • /
    • 2021
  • Bacteriophages infecting Acidovorax citrulli, the causal agent of bacterial fruit blotch, have been proven to be effective for the prevention and control of this disease. However, the occurrence of bacteriophage-resistant bacteria is one of hurdles in phage biocontrol and the understanding of phage resistance in this bacterium is an essential step. In this study, we aim to investigate possible phage resistance of A. citrulli and relationship between phage resistance and pathogenicity, and to isolate and characterize the genes involved in these phenomena. A phage-resistant and less-virulent mutant named as AC-17-G1 was isolated among 3,264 A. citrulli Tn5 mutants through serial spot assays and plaque assays followed by pathogenicity test using seed coating method. The mutant has the integrated Tn5 in the middle of a cupin protein gene. This mutant recovered its pathogenicity and phage sensitivity by complementation with corresponding wild-type gene. Site-directed mutation of this gene from wild-type by CRISPR/Cas9 system resulted in the loss of pathogenicity and acquisition of phage resistance. The growth of AC-17-G1 in King's B medium was much less than the wild-type, but the growth turned into normal in the medium supplemented with D-mannose 6-phosphate or D-fructose 6-phosphate indicating the cupin protein functions as a phosphomannos isomerase. Sodium dodecyl sulfa analysis of lipopolysaccharide (LPS) extracted from the mutant was smaller than that from wild-type. All these data suggest that the cupin protein is a phosphomannos isomerase involved in LPS synthesis, and LPS is an important determinant of pathogenicity and phage susceptibility of A. citrulli.

Comparative Genomic Analysis and Rapid Molecular Detection of Xanthomonas euvesicatoria Using Unique ATP-Dependent DNA Helicase recQ, hrpB1, and hrpB2 Genes Isolated from Physalis pubescens in China

  • Faisal Siddique;Yang Mingxiu;Xu Xiaofeng;Ni Zhe;Haseeb Younis;Peng Lili;Zhang Junhua
    • The Plant Pathology Journal
    • /
    • v.39 no.2
    • /
    • pp.191-206
    • /
    • 2023
  • Ground cherry (Physalis pubescens) is the most prominent species in the Solanaceae family due to its nutritional content, and prospective health advantages. It is grown all over the world, but notably in northern China. In 2019 firstly bacterial leaf spot (BLS) disease was identified on P. pubescens in China that caused by both BLS pathogens Xanthomonas euvesicatoria pv. euvesicatoria resulted in substantial monetary losses. Here, we compared whole genome sequences of X. euvesicatoria to other Xanthomonas species that caused BLS diseases for high similarities and dissimilarities in genomic sequences through average nucleotide identity (ANI) and BLAST comparison. Molecular techniques and phylogenetic trees were adopted to detect X. euvesicatoria on P. pubescens using recQ, hrpB1, and hrpB2 genes for efficient and precise identification. For rapid molecular detection of X. euvesicatoria, loop-mediated isothermal amplification, polymerase chain reaction (PCR), and real-time PCR techniques were used. Whole genome comparison results showed that the genome of X. euvesicatoria was more closely relative to X. perforans than X. vesicatoria, and X. gardneri with 98%, 84%, and 86% ANI, respectively. All infected leaves of P. pubescens found positive amplification, and negative controls did not show amplification. The findings of evolutionary history revealed that isolated strains XeC10RQ, XeH9RQ, XeA10RQ, and XeB10RQ that originated from China were closely relative and highly homologous to the X. euvesicatoria. This research provides information to researchers on genomic variation in BLS pathogens, and further molecular evolution and identification of X. euvesicatoria using the unique target recQ gene through advance molecular approaches.

Effects of Rain-shelter Types on Growth and Fruit Quality of Red Pepper (Capsicum annuum L. var. 'Keummaru') Cultivation in Paddy (고추 논재배 시 비가림형태가 생육 및 과실 품질에 미치는 영향)

  • Lee, Guang-Jae;Song, Myung-Gyu;Kim, Si-Dong;Nam, Sang-Young;Heo, Jeong-Wook;Yoon, Jung-Beom;Kim, Dong-Eok
    • Horticultural Science & Technology
    • /
    • v.34 no.3
    • /
    • pp.355-362
    • /
    • 2016
  • This study was carried out to investigate the effects of rain-shelter types on growth, and fruit quality of red pepper (Capsicum annuum, 'Kemmaru') cultured in paddy. Applied rain-shelter types were outfield (control), simple rain-shelter plastic house with 2 rows (2R), simple rain-shelter plastic house with 4 rows (4R), and perfect plastic house (House). The plant height was the highest in Houses treatment. There was no difference in leaf length and width among the rain-shelter treatments. The fresh and dry weight of red pepper was high in order of House > 4R > 2R > Control. The ASTA value is irregular tendency among the treatments. Hunter's color value 'a' and 'b' was not different from among the treatments. Phytophthora blight, powdery mildew, bacterial spot were not occurred in all of treatments, and Anthracnose was only occurred in control. Mite, Microcephalothrips abdominalis, and Bemisia tabaci were not occurred in all of treatments, and aphid, Helicoverpa assulta, and virus were occurred all of treatments as same degree. Our results will provide rain-shelter cultivation of red pepper can be increase dry yield and decrease disease and insects.

Selection and Quality Evaluation of Sprout Soybean [Glycine max (L.) Merrill] Variety for Environment-Friendly Cultivation in Southern Paddy Field (남부지역 친환경 논 재배를 위한 나물콩 품종 선발 및 품질 평가)

  • Kim, Young-Jin;Lee, Kwang-Won;Cho, Sang-Kyun;Oh, Young-Jin;Shin, Sang-Ouk;Paik, Chae-Hoon;Kim, Kyong-Ho;Kim, Tae-Soo;Kim, Ki-Jong
    • Korean Journal of Organic Agriculture
    • /
    • v.19 no.3
    • /
    • pp.357-372
    • /
    • 2011
  • We carried out the experiment to select the suitable sprout soybean varieties for environment-friendly cultivation in paddy field of southern part area, compares of excess moisture injury degree and yield ability among 29 sprout soybean varieties. Plant growth of sprout soybean was generally low in beginning and recovered after flowering due to rainfall. In paddy field cultivation, number of pod per individual and number of seed per individual were less in difference than upland cultivation, and maturing date was delayed 5-14 days than upland cultivation in most species. When environment-friendly cultivation, pest injury was not caused major problem for the growth during the vegetative period of soybean due to ground spider as natural enemy to insect pest. However, damage of stink bugs showed severe during grain filling period, and Dawonkong, Anpyeongkong, Dachaekong and Wonhwangkong showed susceptible to sting bug. SMV infection was weak and showed some necrosis symptoms in Sokangkong, but black root rot was not infected at all. Bacterial pustule began to be infected slowly from pod enlargement stage in most species, displayed severe symptoms in Dawonkong, Pungsannamulkong, Seonamkong and Sobaeknamulkong. The symptoms of pod anthracnose, pod blight and purple spot were greatly appeared after flowering. Disease resistance varieties was Paldokong, Kwangankong, Doremikong, Somyeongkong, Pungsannamulkong, Iksa-namulkong, Seonamkong, Sojinkong, Pureunkong, Bosugkong, Namhaekong and Sorokkong. Lodging index showed 3 in Saebyeolkong, and other species displayed slight lodging in 0-3 degree. 100-seed weight is 9.8-17.2g extent and increased 0.1-3.7g than upland cultivation in most species, but decreased in some species. Government purchase standard, species correspond to small-seed-size namulkong (Sizing screen diameter 4.0-5.6 mm) was Dawonkong, Dachaekong, Bosugkong, Seonamkong, Sokangkong, Hannamkong, Somyeongkong and Wonhwangkong. Species which seed yield was higher than Pungsannamulkong (266kg/10a) were Sorokkong, Hannamkong, Bosugkong and Sowonkong. Considering sprout soybean species, disease endurance, insect resistance, lodging resistance, 100-seed weight, yield ability and excess moisture tolerances synthetically, Seonamkong, Hannamkong, Doremikong, Bosugkong, Pungwonkong, Kwangankong, Sowonkong, Dagikong, Paldokong, Eunhakong and Pungsannamulkong were promising for environment-friendly cultivation in paddy field.