DOI QR코드

DOI QR Code

Comparative Genomic Analysis and Rapid Molecular Detection of Xanthomonas euvesicatoria Using Unique ATP-Dependent DNA Helicase recQ, hrpB1, and hrpB2 Genes Isolated from Physalis pubescens in China

  • Faisal Siddique (College of Agriculture, Northeast Agricultural University) ;
  • Yang Mingxiu (College of Agriculture, Northeast Agricultural University) ;
  • Xu Xiaofeng (College of Agriculture, Northeast Agricultural University) ;
  • Ni Zhe (College of Agriculture, Northeast Agricultural University) ;
  • Haseeb Younis (College of Agriculture, Northeast Agricultural University) ;
  • Peng Lili (College of Agriculture, Northeast Agricultural University) ;
  • Zhang Junhua (College of Agriculture, Northeast Agricultural University)
  • Received : 2022.08.31
  • Accepted : 2023.03.07
  • Published : 2023.04.01

Abstract

Ground cherry (Physalis pubescens) is the most prominent species in the Solanaceae family due to its nutritional content, and prospective health advantages. It is grown all over the world, but notably in northern China. In 2019 firstly bacterial leaf spot (BLS) disease was identified on P. pubescens in China that caused by both BLS pathogens Xanthomonas euvesicatoria pv. euvesicatoria resulted in substantial monetary losses. Here, we compared whole genome sequences of X. euvesicatoria to other Xanthomonas species that caused BLS diseases for high similarities and dissimilarities in genomic sequences through average nucleotide identity (ANI) and BLAST comparison. Molecular techniques and phylogenetic trees were adopted to detect X. euvesicatoria on P. pubescens using recQ, hrpB1, and hrpB2 genes for efficient and precise identification. For rapid molecular detection of X. euvesicatoria, loop-mediated isothermal amplification, polymerase chain reaction (PCR), and real-time PCR techniques were used. Whole genome comparison results showed that the genome of X. euvesicatoria was more closely relative to X. perforans than X. vesicatoria, and X. gardneri with 98%, 84%, and 86% ANI, respectively. All infected leaves of P. pubescens found positive amplification, and negative controls did not show amplification. The findings of evolutionary history revealed that isolated strains XeC10RQ, XeH9RQ, XeA10RQ, and XeB10RQ that originated from China were closely relative and highly homologous to the X. euvesicatoria. This research provides information to researchers on genomic variation in BLS pathogens, and further molecular evolution and identification of X. euvesicatoria using the unique target recQ gene through advance molecular approaches.

Keywords

Acknowledgement

We are especially thankful to Dr. Shuang Song (Assistance Professor, Northeast Agricultural University) for providing Xanthomonas euvesicatoria inoculum (Xeu1, Xeu2, and Xeu3). This research was funded by "Precision poverty alleviation project of planting industry science and technology, special project of central leading local science and technology development, grant number ZY18C08", "Isolation and identification of candidate genes related to response to the stress of Magnaporthe grisea in rice, nature fund project, Heilongjiang, China, grant number C2017032", and "Integration and extension of green control techniques for rice diseases in main rice production areas of Heilongjiang, grant number GA19B104".

References

  1. Alzahrani, D., Albokhari, E., Yaradua, S. and Abba, A. 2021. Complete chloroplast genome sequences of Dipterygium glaucum and Cleome chrysantha and other Cleomaceae species, comparative analysis and phylogenetic relationships. Saudi J. Biol. Sci. 28:2476-2490.  https://doi.org/10.1016/j.sjbs.2021.01.049
  2. Baker, R., Bragard, C., Candresse, T. Gilioli, G., Gregoire, J.-C., Holb, I., Jeger, M. J., Karadjova, O. E., Magnusson, C., Makowski, D., Manceau, C., Navajas, M., Rafoss, T., Rossi, V., Schans, J., Schrader, G., Urek, G., van Lenteren, J. C., Vloutoglou, I., Winter, S. and van der Werf, W. 2014. Scientific opinion on the pest categorisation of Xanthomonas campestris pv. vesicatoria (Doidge) dye. EFSA J. 12:3720. 
  3. Ciria, R., Abreu-Goodger, C., Korett, E. and Merino, E. 2004. GeConT: gene context analysis. Bioinformatics 20:2307-2308.  https://doi.org/10.1093/bioinformatics/bth216
  4. Darling, A. E., Mau, B. and Perna, N. T. 2010. progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS ONE 5:e11147. 
  5. Dhakal, U., Dobhal, S., Alvarez, A. M. and Arif, M. 2019. Phylogenetic analyses of xanthomonads causing bacterial leaf spot of tomato and pepper: Xanthomonas euvesicatoria revealed homologous populations despite distant geographical distribution. Microorganisms 7:462. 
  6. EFSA Panel on Plat Health (PLH). 2014. Scientific opinion on the pest categorization of Xanthomonas campestris pv. vesicatoria (Doidge) dye. EFSA J. 12:3720. 
  7. El Sheikha, A. F. 2004. Technological, chemical and microbiological studies on some packed foods. M.S. thesis. Faculty of Agriculture, Minufiya University, El-Kom, Egypt. 174 pp. 
  8. El Sheikha, A. F., Piombo, G., Goli, T. and Montet, D. 2010. Main composition of Physalis (Physalis pubescens L.) fruit juice from Egypt. Fruits 65:255-265.  https://doi.org/10.1051/fruits/2010021
  9. Garita-Cambronero, J., Palacio-Bielsa, A. and Cubero, J. 2018. Xanthomonas arboricola pv. pruni, causal agent of bacterial spot of stone fruits and almond: its genomic and phenotypic characteristics in the X. arboricola species context. Mol. Plant Pathol. 19:2053-2065.  https://doi.org/10.1111/mpp.12679
  10. Hao, X.-L., Zhang, J.-J., Li, X.-H. and Wang, W. 2017. Application of a chitosan coating as a carrier for natamycin to maintain the storage quality of ground cherry (Physalis pubescens L.). J. Zhejiang Univ. Sci. B 18:807-815. https://doi.org/10.1631/jzus.B1600295
  11. Hartung, F. and Puchta, H. 2006. The RecQ gene family in plants. J. Plant Physiol. 163:287-296.  https://doi.org/10.1016/j.jplph.2005.10.013
  12. Hernandez-Huerta, J., Tamez-Guerra, P., Gomez-Flores, R., Delgado-Gardea, M. C. E., Garcia-Madrid, M. S., Robles-Hernandez, L. and Infante-Ramirez, R. 2021. Prevalence of Xanthomonas euvesicatoria (formally X. perforans) associated with bacterial spot severity in Capsicum annuum crops in south central Chihuahua, Mexico. PeerJ 9:e10913. 
  13. Hurvich, C. M. and Tsai, C.-L. 1989. Regression and time series model selection in small samples. Biometrika 76:297-307.  https://doi.org/10.1093/biomet/76.2.297
  14. Jones, J. B., Lacy, G. H., Bouzar, H., Stall, R. E. and Schaad, N. W. 2004. Reclassification of the xanthomonads associated with bacterial spot disease of tomato and pepper. Syst. Appl. Microbiol. 27:755-762.  https://doi.org/10.1078/0723202042369884
  15. Kebede, M., Timilsina, S., Ayalew, A., Admassu, B., Potnis, N., Minsavage, G. V., Goss, E. M., Hong, J. C., Strayer, A., Paret, M., Jones, J. B. and Vallad, G. E. 2014. Molecular characterization of Xanthomonas strains responsible for bacterial spot of tomato in Ethiopia. Eur. J. Plant Pathol. 140:677-688.  https://doi.org/10.1007/s10658-014-0497-3
  16. Kositcharoenkul, N., Chatchawankanphanich, O., Bhunchoth, A. and Kositratana, W. 2011. Detection of Xanthomonas citri subsp. citri from field samples using single-tube nested PCR. Plant Pathol. 60:436-442.  https://doi.org/10.1111/j.1365-3059.2010.02390.x
  17. Kyeon, M.-S., Son, S.-H., Noh, Y.-H., Kim, Y.-E., Lee, H.-I. and Cha, J.-S. 2016. Xanthomonas euvesicatoria causes bacterial spot disease on pepper plant in Korea. Plant Pathol. J. 32:431-440.  https://doi.org/10.5423/PPJ.OA.01.2016.0016
  18. Larrea-Sarmiento, A., Dhakal, U., Boluk, G., Fatdal, L., Alvarez, A., Strayer-Scherer, A., Paret, M., Jones, J., Jenkins, D. and Arif, M. 2018. Development of a genome-informed loop-mediated isothermal amplification assay for rapid and specific detection of Xanthomonas euvesicatoria. Sci. Rep. 8:14298. 
  19. Lee, I., Kim, Y. O., Park, S.-C. and Chun, J. 2015. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int. J. Syst. Evol. Microbiol. 66:1100-1103.  https://doi.org/10.1099/ijsem.0.000760
  20. Luchese, C. L., Gurak, P. D. and Marczak, L. D. F. 2015. Osmotic dehydration of physalis (Physalis peruviana L.): evaluation of water loss and sucrose incorporation and the quantification of carotenoids. LWT Food Sci Technol. 63:1128-1136.  https://doi.org/10.1016/j.lwt.2015.04.060
  21. Martins-Pinheiro, M., Galhardo, R. S., Lage, C., Lima-Bessa, K. M., Aires, K. A. and Menck, C. F. M. 2004. Different patterns of evolution for duplicated DNA repair genes in bacteria of the Xanthomonadales group. BMC Evol. Biol. 4:29. 
  22. Mendonca, V. M., Klepin, H. D. and Matson, S. W. 1995. DNA helicases in recombination and repair: construction of a delta uvrD delta helD delta recQ mutant deficient in recombination and repair. J. Bacteriol. 177:1326-1335.  https://doi.org/10.1128/jb.177.5.1326-1335.1995
  23. Munhoz, C. F., Weiss, B., Hanai, L. R., Zucchi, M. I., Fungaro, M. H. P., Oliveira, A. L. M., Monteiro-Vitorello, C. B. and Vieira, M. L. C. 2011. Genetic diversity and a PCR-based method for Xanthomonas axonopodis detection in passion fruit. Phytopathology 101:416-424.  https://doi.org/10.1094/PHYTO-06-10-0169
  24. Niessen, L. 2015. Current state and future perspectives of loop-mediated isothermal amplification (LAMP)-based diagnosis of filamentous fungi and yeasts. Appl. Microbiol. Biotechnol. 99:553-574.  https://doi.org/10.1007/s00253-014-6196-3
  25. Ouyang, P., Arif, M., Fletcher, J., Melcher, U. and Ochoa Corona, F. M. 2013. Enhanced reliability and accuracy for field deployable bioforensic detection and discrimination of Xylella fastidiosa subsp. pauca, causal agent of citrus variegated chlorosis using Razor Ex technology and TaqMan quantitative PCR. PLoS ONE 8:e81647. 
  26. Patrignani, A. and Ochsner, T. E. 2015. Canopeo: a powerful new tool for measuring fractional green canopy cover. Agron. J. 107:2312-2320.  https://doi.org/10.2134/agronj15.0150
  27. Roach, R., Mann, R., Gambley, C. G., Shivas, R. G. and Rodoni, B. 2018. Identification of Xanthomonas species associated with bacterial leaf spot of tomato, capsicum and chilli crops in eastern Australia. Eur. J. Plant Pathol. 150:595-608.  https://doi.org/10.1007/s10658-017-1303-9
  28. Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4:406-425.
  29. Schrader, C., Schielke, A., Ellerbroek, L. and Johne, R. 2012. PCR inhibitors: occurrence, properties and removal. J. Appl. Microbiol. 113:1014-1026. https://doi.org/10.1111/j.1365-2672.2012.05384.x
  30. Schwarz, G. 1978. Estimating the dimension of a model. Ann. Stat. 6:461-464.  https://doi.org/10.1214/aos/1176344136
  31. Song, S., Zhang, Y., Liu, H., Pan, C.-Q., Yang, M.-X., Ding, J.-F. and Zhang, J.-H. 2019. Isolation and characterization of Xanthomonas euvesicatoria pv. euvesicatoria causing bacterial spot in Physalis pubescens in Northeast China. J. Plant Pathol. 101:361-366. 
  32. Strayer, A. L., Jeyaprakash, A., Minsavage, G. V., Timilsina, S., Vallad, G. E., Jones, J. B. and Paret, M. L. 2016. A multiplex real-time PCR assay differentiates four Xanthomonas species associated with bacterial spot of tomato. Plant Dis. 100:1660-1668.  https://doi.org/10.1094/PDIS-09-15-1085-RE
  33. Tamura, K. 1992. Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G + C-content biases. Mol. Biol. Evol. 9:678-687. 
  34. Tamura, K., Nei, M. and Kumar, S. 2004. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc. Natl. Acad. Sci. U. S. A. 101:11030-11035.  https://doi.org/10.1073/pnas.0404206101
  35. Tamura, K., Stecher, G. and Kumar, S. 2021. MEGA 11: Molecular Evolutionary Genetics Analysis version 11. Mol. Biol. Evol. 38:3022-3027.  https://doi.org/10.1093/molbev/msab120
  36. Teper, D., Burstein, D., Salomon, D., Gershovitz, M., Pupko, T. and Sessa, G. 2016. Identification of novel Xanthomonas euvesicatoria type III effector proteins by a machine-learning approach. Mol. Plant Pathol. 17:398-411.  https://doi.org/10.1111/mpp.12288
  37. USDA Natural Resources Conservation Service. 2016. Plants database. Physalis pubescens. URL http://plants.usda.gov [31 August 2022]. 
  38. Yaripour, Z., Mohsen Taghavi, S., Osdaghi, E. and Lamichhane, J. R. 2017. Host range and phylogenetic analysis of Xanthomonas alfalfae causing bacterial leaf spot of alfalfa in Iran. Eur. J. Plant Pathol. 150:267-274.  https://doi.org/10.1007/s10658-017-1271-0
  39. Yasuhara-Bell, J., Marrero, G., Arif, M., de Silva, A. and Alvarez, A. M. 2017. Development of a loop-mediated isothermal amplification assay for the detection of Dickeya spp. Phytopathology 107:1339-1345.  https://doi.org/10.1094/PHYTO-04-17-0160-R
  40. Zhang, Y. and Tanner, N. A. 2017. Isothermal amplification of long, discrete DNA fragments facilitated by single stranded binding protein. Sci. Rep. 7:8497. 
  41. Zhong, J. and Zhao, X. 2018. Isothermal amplification technologies for the detection of foodborne pathogens. Food Anal. Methods 11:1543-1560. https://doi.org/10.1007/s12161-018-1177-2