Browse > Article
http://dx.doi.org/10.5423/PPJ.OA.08.2021.0134

Identification of a Cupin Protein Gene Responsible for Pathogenicity, Phage Susceptibility and LPS Synthesis of Acidovorax citrulli  

Rahimi-Midani, Aryan (Department of Microbiology, Pukyong National University)
Kim, Min-Jung (Department of Microbiology, Pukyong National University)
Choi, Tae-Jin (Department of Microbiology, Pukyong National University)
Publication Information
The Plant Pathology Journal / v.37, no.6, 2021 , pp. 555-565 More about this Journal
Abstract
Bacteriophages infecting Acidovorax citrulli, the causal agent of bacterial fruit blotch, have been proven to be effective for the prevention and control of this disease. However, the occurrence of bacteriophage-resistant bacteria is one of hurdles in phage biocontrol and the understanding of phage resistance in this bacterium is an essential step. In this study, we aim to investigate possible phage resistance of A. citrulli and relationship between phage resistance and pathogenicity, and to isolate and characterize the genes involved in these phenomena. A phage-resistant and less-virulent mutant named as AC-17-G1 was isolated among 3,264 A. citrulli Tn5 mutants through serial spot assays and plaque assays followed by pathogenicity test using seed coating method. The mutant has the integrated Tn5 in the middle of a cupin protein gene. This mutant recovered its pathogenicity and phage sensitivity by complementation with corresponding wild-type gene. Site-directed mutation of this gene from wild-type by CRISPR/Cas9 system resulted in the loss of pathogenicity and acquisition of phage resistance. The growth of AC-17-G1 in King's B medium was much less than the wild-type, but the growth turned into normal in the medium supplemented with D-mannose 6-phosphate or D-fructose 6-phosphate indicating the cupin protein functions as a phosphomannos isomerase. Sodium dodecyl sulfa analysis of lipopolysaccharide (LPS) extracted from the mutant was smaller than that from wild-type. All these data suggest that the cupin protein is a phosphomannos isomerase involved in LPS synthesis, and LPS is an important determinant of pathogenicity and phage susceptibility of A. citrulli.
Keywords
Acidovorax citrulli; cupin; pathogenicity; phage resistance;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Darveau, R. P. and Hancock, R. E. W. 1983. Procedure for isolation of bacterial lipopolysaccharides from both smooth and rough Pseudomonas aeruginosa and Salmonella typhimurium strains. J. Bacteriol. 155:831-838.   DOI
2 Tian, Y., Zhao, Y., Wu, X., Liu, F., Hu, B. and Walcott, R. R. 2015. The type VI protein secretion system contributes to biofilm formation and seed-to-seedling transmission of Acidovorax citrulli on melon. Mol. Plant Pathol. 16:38-47.   DOI
3 Vu, N. T. and Oh, C.-S. 2020. Bacteriophage usage for bacterial disease management and diagnosis in plants. Plant Pathol. J. 36:204-217.   DOI
4 Watson, B. N. J., Vercoe, R. B., Salmond, G. P. C., Westra, E. R., Staals, R. H. J. and Fineran, P. C. 2019. Type I-F CRISPRCas resistance against virulent phages results in abortive infection and provides population-level immunity. Nat. Commun. 10:5526.   DOI
5 Leon-Velarde, C. G., Happonen, L., Pajunen, M., Leskinen, K., Kropinski, A. M., Mattinen, L., Rajtor, M., Zur, J., Smith, D., Chen, S., Nawaz, A., Johnson, R. P., Odumeru, J. A., Griffiths, M. W. and Skurnik, M. 2016. Yersinia enterocolitica-specific infection by bacteriophages TG1 and ϕR1-RT is dependent on temperature-regulated expression of the phage host receptor OmpF. Appl. Environ. Microbiol. 82:5340-5353.   DOI
6 Weisser, P., Kramer, R. and Sprenger, G. A. 1996. Expression of the Escherichia coli pmi gene, encoding phosphomannose-isomerase in Zymomonas mobilis, leads to utilization of mannose as a novel growth substrate, which can be used as a selective marker. Appl. Environ. Microbiol. 62:4155-4161.   DOI
7 Xu, C., Jin, M. and Zhang, X. 2019. Roles of microbial metabolites in bacteriophage-microbe interactions. In: Virus infection and tumorigenesis, ed. by X. Zhang, pp. 175-207. Springer, Singapore.
8 Zhang, X., Zhao, M., Yan, J., Yang, L., Yang, Y., Guan, W., Walcott, R. and Zhao, T. 2018. Involvement of hrpX and hrpG in the virulence of Acidovorax citrulli strain Aac5, causal agent of bacterial fruit blotch in cucurbits. Front. Microbiol. 9:507.   DOI
9 Koskella, B. and Brockhurst, M. A. 2014. Bacteria-phage coevolution as a driver of ecological and evolutionary processes in microbial communities. FEMS Microbiol. Rev. 38:916-931.   DOI
10 Kong, Q., Yang, J., Liu, Q., Alamuri, P., Roland, K. L. and Curtiss, R. 3rd. 2011. Effect of deletion of genes involved in lipopolysaccharide core and O-antigen synthesis on virulence and immunogenicity of Salmonella enterica serovar typhimurium. Infect. Immun. 79:4227-4239.   DOI
11 Koskella, B. and Meaden, S. 2013. Understanding bacteriophage specificity in natural microbial communities. Viruses 5:806-823.   DOI
12 Lee, C., Mannaa, M., Kim, N., Kim, J., Choi, Y., Kim, S. H., Jung, B., Lee, H.-H., Lee, J. and Seo, Y.-S. 2019. Stress tolerance and virulence-related roles of lipopolysaccharide in Burkholderia glumae. Plant Pathol. J. 35:445-458.   DOI
13 Doherty, M., Todd, D., McFerran, N. and Hoey, E. M. 1999. Sequence analysis of a porcine enterovirus serotype 1 isolate: relationships with other picornaviruses. J. Gen. Virol. 80:1929-1941.   DOI
14 Chatterjee, A., Willett, J. L. E., Nguyen, U. T., Monogue, B., Palmer, K. L., Dunny, G. M. and Duerkop, B. A. 2020. Parallel Genomics uncover novel enterococcal-bacteriophage interactions. mBio 11:e03120-19.
15 Coons G. H. and Kotila J. E. 1925. The transmissible lytic principle (bacteriophage) in relation to plant pathogens. Phytopathology 15:357-370.
16 d'Herelle, F. 1926. The bacteriophage and its behavior. Williams and Wilkins, Baltimore, MD, USA. 629 pp.
17 Eckshtain-Levi, N., Munitz, T., Zivanovic, M., Traore, S. M., Sproer, C., Zhao, B., Welbaum, G., Walcott, R., Sikorski, J. and Burdman, S. 2014. Comparative analysis of type III secreted effector genes reflects divergence of Acidovorax citrulli Strains into three distinct lineages. Phytopatholgy 104:1152-1162.   DOI
18 Guan, W., Wang, T., Huang, Q., Tian, E., Liu, B., Yang, Y. and Zhao, T. 2020. A LuxR-type regulator, AcrR, regulates flagellar assembly and contributes to virulence, motility, biofilm formation, and growth ability of Acidovorax citrulli. Mol. Plant Pathol. 21:489-501.   DOI
19 Hassan, A. Y., Lin, J. T., Ricker, N. and Anany, H. 2021. The age of phage: friend or foe in the new dawn of therapeutic and biocontrol applications? Pharmaceuticals 14:199.   DOI
20 Khan Mirzaei, M. and Nilsson, A. S. 2015. Isolation of phages for phage therapy: a comparison of spot tests and efficiency of plating analyses for determination of host range and efficacy. PLoS ONE 10:e0118557.   DOI
21 Oechslin, F. 2018. Resistance development to bacteriophages occurring during bacteriophage therapy. Viruses 10:351.   DOI
22 Khuri, S., Bakker, F. T. and Dunwell, J. M. 2001. Phylogeny, function, and evolution of the cupins, a structurally conserved, functionally diverse superfamily of proteins. Mol. Biol. Evol. 18:593-605.   DOI
23 Liu, H. and Naismith, J. H. 2008. An efficient one-step site-directed deletion, insertion, single and multiple-site plasmid mutagenesis protocol. BMC Biotechnol. 8:91.   DOI
24 Luo, J., Qiu, W., Chen, L., Anjum, S. I., Yu, M., Shan, C., Ilyas, M., Li, B., Wang, Y. and Sun, G. 2015. Identification of pathogenicity-related genes in biofilm-defective Acidovorax citrulli by transposon Tn5 mutagenesis. Int. J. Mol. Sci. 16:28050-28062.   DOI
25 Marks, T. and Sharp, R. 2000. Bacteriophages and biotechnology: a review. J. Chem. Technol. Biotechnol. 75:6-17.   DOI
26 Meaden, S., Paszkiewicz, K. and Koskella, B. 2015. The cost of phage resistance in a plant pathogenic bacterium is context-dependent. Evolution 69:1321-1328.   DOI
27 Barbu, E. M., Cady, K. C. and Hubby, B. 2016. Phage therapy in the era of synthetic biology. Cold Spring Harb. Perspect. Biol. 8:a023879.   DOI
28 Park, J., Lee, G. M., Kim, D., Park, D. H. and Oh, C. S. 2018. Characterization of the lytic bacteriophage phiEaP-8 effective against both Erwinia amylovora and Erwinia pyrifoliae causing severe diseases in apple and pear. Plant Pathol. J. 34:445-450.   DOI
29 Pirhonen, M., Heino, P., Helander, I., Harju, P. and Palva, E. T. 1988. Bacteriophage T4 resistant mutants of the plant pathogen Erwinia carotovora. Microb. Pathog. 4:359-367.   DOI
30 Rahimi-Midani, A., Kim, J.-O., Kim, J. H., Lim, J., Ryu, J.-G., Kim, M.-K. and Choi, T.-J. 2020. Potential use of newly isolated bacteriophage as a biocontrol against Acidovorax citrulli. Arch. Microbiol. 202:377-389.   DOI
31 Brockhurst, M. A., Koskella, B. and Zhang, Q.-G. 2021. Bacteria-phage antagonistic coevolution and the implications for phage therapy. In: Bacteriophages: biology, technology, therapy, eds. by D. R. Harper, S. T. Abedon, B. H. Burrowes and M. L. McConville, pp. 1-21. Springer, Cham, Denmark.
32 Rahimi-Midani, A., Lee, Y. S., Kang, S.-W., Kim, M.-K. and Choi, T.-J. 2018. First isolation and molecular characterization of bacteriophages infecting Acidovorax citrulli, the causal agent of bacterial fruit blotch. Plant Pathol. J. 34:59-64.   DOI
33 Szermer-Olearnik, B. and Boratynski, J. 2015. Removal of endotoxins from bacteriophage preparations by extraction with organic solvents. PLoS ONE 10:e0122672.   DOI
34 Filippov, A. A., Sergueev, K. V., He, Y., Huang, X.-Z., Gnade, B. T., Mueller, A. J., Fernandez-Prada, C. M. and Nikolich, M. P. 2011. Bacteriophage-resistant mutants in Yersinia pestis: identification of phage receptors and attenuation for mice. PLoS ONE 6:e25486.   DOI